Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JAMA Psychiatry ; 80(3): 250-259, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36696101

ABSTRACT

Importance: No clinically applicable diagnostic test exists for severe mental disorders. Lipids harbor potential as disease markers. Objective: To define a reproducible profile of lipid alterations in the blood plasma of patients with schizophrenia (SCZ) independent of demographic and environmental variables and to investigate its specificity in association with other psychiatric disorders, ie, major depressive disorder (MDD) and bipolar disorder (BPD). Design, Setting, and Participants: This was a multicohort case-control diagnostic analysis involving plasma samples from psychiatric patients and control individuals collected between July 17, 2009, and May 18, 2018. Study participants were recruited as consecutive and volunteer samples at multiple inpatient and outpatient mental health hospitals in Western Europe (Germany and Austria [DE-AT]), China (CN), and Russia (RU). Individuals with DSM-IV or International Statistical Classification of Diseases and Related Health Problems, Tenth Revision diagnoses of SCZ, MDD, BPD, or a first psychotic episode, as well as age- and sex-matched healthy controls without a mental health-related diagnosis were included in the study. Samples and data were analyzed from January 2018 to September 2020. Main Outcomes and Measures: Plasma lipidome composition was assessed using liquid chromatography coupled with untargeted mass spectrometry. Results: Blood lipid levels were assessed in 980 individuals (mean [SD] age, 36 [13] years; 510 male individuals [52%]) diagnosed with SCZ, BPD, MDD, or those with a first psychotic episode and in 572 controls (mean [SD] age, 34 [13] years; 323 male individuals [56%]). A total of 77 lipids were found to be significantly altered between those with SCZ (n = 436) and controls (n = 478) in all 3 sample cohorts. Alterations were consistent between cohorts (CN and RU: [Pearson correlation] r = 0.75; DE-AT and CN: r = 0.78; DE-AT and RU: r = 0.82; P < 10-38). A lipid-based predictive model separated patients with SCZ from controls with high diagnostic ability (area under the receiver operating characteristic curve = 0.86-0.95). Lipidome alterations in BPD and MDD, assessed in 184 and 256 individuals, respectively, were found to be similar to those of SCZ (BPD: r = 0.89; MDD: r = 0.92; P < 10-79). Assessment of detected alterations in individuals with a first psychotic episode, as well as patients with SCZ not receiving medication, demonstrated only limited association with medication restricted to particular lipids. Conclusions and Relevance: In this study, SCZ was accompanied by a reproducible profile of plasma lipidome alterations, not associated with symptom severity, medication, and demographic and environmental variables, and largely shared with BPD and MDD. This lipid alteration signature may represent a trait marker of severe psychiatric disorders, indicating its potential to be transformed into a clinically applicable testing procedure.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Psychotic Disorders , Schizophrenia , Humans , Male , Adult , Bipolar Disorder/diagnosis , Schizophrenia/diagnosis , Depressive Disorder, Major/psychology , Depression , Psychotic Disorders/diagnosis
2.
BMC Genomics ; 22(1): 505, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34225652

ABSTRACT

BACKGROUND: Sunflower is an important oilseed crop domesticated in North America approximately 4000 years ago. During the last century, oil content in sunflower was under strong selection. Further improvement of oil properties achieved by modulating its fatty acid composition is one of the main directions in modern oilseed crop breeding. RESULTS: We searched for the genetic basis of fatty acid content variation by genotyping 601 inbred sunflower lines and assessing their lipid and fatty acid composition. Our genome-wide association analysis based on the genotypes for 15,483 SNPs and the concentrations of 23 fatty acids, including minor fatty acids, revealed significant genetic associations for eleven of them. Identified genomic regions included the loci involved in rare fatty acids variation on chromosomes 3 and 14, explaining up to 34.5% of the total variation of docosanoic acid (22:0) in sunflower oil. CONCLUSIONS: This is the first large scale implementation of high-throughput lipidomic profiling to sunflower germplasm characterization. This study contributes to the genetic characterization of Russian sunflower collections, which made a substantial contribution to the development of sunflower as the oilseed crop worldwide, and provides new insights into the genetic control of oil composition that can be implemented in future studies.


Subject(s)
Fatty Acids/analysis , Helianthus , Plant Oils/analysis , Genetic Association Studies , Genotype , Helianthus/genetics , North America , Plant Breeding , Russia
3.
PeerJ ; 7: e6547, 2019.
Article in English | MEDLINE | ID: mdl-30863679

ABSTRACT

Oilseed crops are one of the most important sources of vegetable oils for food and industry. Nutritional and technical properties of vegetable oil are primarily determined by its fatty acid (FA) composition. The content and composition of FAs in plants are commonly determined using gas chromatography-mass spectrometry (GS-MS) or gas chromatography-flame ionization detection (GC-FID) techniques. In the present work, we applied ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) technique to FA profiling of sunflower and rapeseed seeds and compared this method with the GC-FID technique. GC-FID detected 11 FAs in sunflower and 13 FAs in rapeseed, while UPLC-MS appeared to be more sensitive, detecting about 2.5 times higher numbers of FAs in both plants. In addition to even-chain FAs, UPLC-MS was able to detect odd-chain FAs. The longest FA detected using GC-FID was an FA with 24 carbon atoms, whereas UPLC-MS could reveal the presence of longer FAs with the tails of up to 28 carbon atoms. Based on our results, we may conclude that UPLC-MS has great potential to be used for the assessment of FA profiles of oil crops.

SELECTION OF CITATIONS
SEARCH DETAIL
...