Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Ultrasound Med ; 41(6): 1509-1524, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34553780

ABSTRACT

OBJECTIVES: Early placental volume (PV) has been associated with small-for-gestational-age infants born under the 10th/5th centiles (SGA10/SGA5). Manual or semiautomated PV quantification from 3D ultrasound (3DUS) is time intensive, limiting its incorporation into clinical care. We devised a novel convolutional neural network (CNN) pipeline for fully automated placenta segmentation from 3DUS images, exploring the association between the calculated PV and SGA. METHODS: Volumes of 3DUS obtained from singleton pregnancies at 11-14 weeks' gestation were automatically segmented by our CNN pipeline trained and tested on 99/25 images, combining two 2D and one 3D models with downsampling/upsampling architecture. The PVs derived from the automated segmentations (PVCNN ) were used to train multivariable logistic-regression classifiers for SGA10/SGA5. The test performance for predicting SGA was compared to PVs obtained via the semiautomated VOCAL (GE-Healthcare) method (PVVOCAL ). RESULTS: We included 442 subjects with 37 (8.4%) and 18 (4.1%) SGA10/SGA5 infants, respectively. Our segmentation pipeline achieved a mean Dice score of 0.88 on an independent test-set. Adjusted models including PVCNN or PVVOCAL were similarly predictive of SGA10 (area under curve [AUC]: PVCNN  = 0.780, PVVOCAL  = 0.768). The addition of PVCNN to a clinical model without any PV included (AUC = 0.725) yielded statistically significant improvement in AUC (P < .05); whereas PVVOCAL did not (P = .105). Moreover, when predicting SGA5, including the PVCNN (0.897) brought statistically significant improvement over both the clinical model (0.839, P = .015) and the PVVOCAL model (0.870, P = .039). CONCLUSIONS: First trimester PV measurements derived from our CNN segmentation pipeline are significantly associated with future SGA. This fully automated tool enables the incorporation of including placental volumetric biometry into the bedside clinical evaluation as part of a multivariable prediction model for risk stratification and patient counseling.


Subject(s)
Placenta , Ultrasonography, Prenatal , Female , Gestational Age , Humans , Infant, Newborn , Infant, Small for Gestational Age , Placenta/diagnostic imaging , Pregnancy , Pregnancy Trimester, First , Ultrasonography, Prenatal/methods
2.
Ann Thorac Surg ; 112(4): 1317-1324, 2021 10.
Article in English | MEDLINE | ID: mdl-32987018

ABSTRACT

BACKGROUND: Aortic root evaluation is conventionally based on 2-dimensional measurements at a single phase of the cardiac cycle. This work presents an image analysis method for assessing dynamic 3-dimensional changes in the aortic root of minimally calcified bicuspid aortic valves (BAVs) with and without moderate to severe aortic regurgitation. METHODS: The aortic root was segmented over the full cardiac cycle in 3-dimensional transesophageal echocardiographic images acquired from 19 patients with minimally calcified BAVs and from 16 patients with physiologically normal tricuspid aortic valves (TAVs). The size and dynamics of the aortic root were assessed using the following image-derived measurements: absolute mean root volume and mean area at the level of the ventriculoaortic junction, sinuses of Valsalva, and sinotubular junction, as well as normalized root volume change and normalized area change of the ventriculoaortic junction, sinuses of Valsalva, and sinotubular junction over the cardiac cycle. RESULTS: Normalized volume change over the cardiac cycle was significantly greater in BAV roots with moderate to severe regurgitation than in normal TAV roots and in BAV roots with no or mild regurgitation. Aortic root dynamics were most significantly different at the mid-level of the sinuses of Valsalva in BAVs with moderate to severe regurgitation than in competent TAVs and BAVs. CONCLUSIONS: Echocardiographic reconstruction of the aortic root demonstrates significant differences in dynamics of BAV roots with moderate to severe regurgitation relative to physiologically normal TAVs and competent BAVs. This finding may have implications for risk of future dilatation, dissection, or rupture, which warrant further investigation.


Subject(s)
Aorta/diagnostic imaging , Aorta/physiopathology , Aortic Valve Insufficiency/physiopathology , Bicuspid Aortic Valve Disease/physiopathology , Echocardiography, Three-Dimensional , Echocardiography, Transesophageal , Vascular Calcification/physiopathology , Adult , Aged , Aortic Valve Insufficiency/complications , Bicuspid Aortic Valve Disease/complications , Female , Humans , Male , Middle Aged , Retrospective Studies , Severity of Illness Index , Vascular Calcification/complications
3.
J Med Imaging (Bellingham) ; 7(1): 014004, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32118089

ABSTRACT

Purpose: Placental size in early pregnancy has been associated with important clinical outcomes, including fetal growth. However, extraction of placental size from three-dimensional ultrasound (3DUS) requires time-consuming interactive segmentation methods and is prone to user variability. We propose a semiautomated segmentation technique that requires minimal user input to robustly measure placental volume from 3DUS images. Approach: For semiautomated segmentation, a single, central 2D slice was manually annotated to initialize an automated multi-atlas label fusion (MALF) algorithm. The dataset consisted of 47 3DUS volumes obtained at 11 to 14 weeks in singleton pregnancies (28 anterior and 19 posterior). Twenty-six of these subjects were imaged twice within the same session. Dice overlap and surface distance were used to quantify the automated segmentation accuracy compared to expert manual segmentations. The mean placental volume measurements obtained by our method and VOCAL (virtual organ computer-aided analysis), a leading commercial semiautomated method, were compared to the manual reference set. The test-retest reliability was also assessed. Results: The overlap between our automated segmentation and manual (mean Dice: 0.824 ± 0.061 , median: 0.831) was within the range reported by other methods requiring extensive manual input. The average surface distance was 1.66 ± 0.96 mm . The correlation coefficient between test-retest volumes was r = 0.88 , and the intraclass correlation was ICC ( 1 ) = 0.86 . Conclusions: MALF is a promising method that can allow accurate and reliable segmentation of the placenta with minimal user interaction. Further refinement of this technique may allow for placental biometry to be incorporated into clinical pregnancy surveillance.

4.
Stat Atlases Comput Models Heart ; 11395: 142-151, 2019.
Article in English | MEDLINE | ID: mdl-31579311

ABSTRACT

Ischemic mitral regurgitation (IMR) is primarily a left ventricular disease in which the mitral valve is dysfunctional due to ventricular remodeling after myocardial infarction. Current automated methods have focused on analyzing the mitral valve and left ventricle independently. While these methods have allowed for valuable insights into mechanisms of IMR, they do not fully integrate pathological features of the left ventricle and mitral valve. Thus, there is an unmet need to develop an automated segmentation algorithm for the left ventricular mitral valve complex, in order to allow for a more comprehensive study of this disease. The objective of this study is to generate and evaluate segmentations of the left ventricular mitral valve complex in pre-operative 3D transesophageal echocardiography using multi-atlas label fusion. These patient-specific segmentations could enable future statistical shape analysis for clinical outcome prediction and surgical risk stratification. In this study, we demonstrate a preliminary segmentation pipeline that achieves an average Dice coefficient of 0.78 ± 0.06.

5.
Neuroinformatics ; 17(1): 83-102, 2019 01.
Article in English | MEDLINE | ID: mdl-29946897

ABSTRACT

ITK-SNAP is an interactive software tool for manual and semi-automatic segmentation of 3D medical images. This paper summarizes major new features added to ITK-SNAP over the last decade. The main focus of the paper is on new features that support semi-automatic segmentation of multi-modality imaging datasets, such as MRI scans acquired using different contrast mechanisms (e.g., T1, T2, FLAIR). The new functionality uses decision forest classifiers trained interactively by the user to transform multiple input image volumes into a foreground/background probability map; this map is then input as the data term to the active contour evolution algorithm, which yields regularized surface representations of the segmented objects of interest. The new functionality is evaluated in the context of high-grade and low-grade glioma segmentation by three expert neuroradiogists and a non-expert on a reference dataset from the MICCAI 2013 Multi-Modal Brain Tumor Segmentation Challenge (BRATS). The accuracy of semi-automatic segmentation is competitive with the top specialized brain tumor segmentation methods evaluated in the BRATS challenge, with most results obtained in ITK-SNAP being more accurate, relative to the BRATS reference manual segmentation, than the second-best performer in the BRATS challenge; and all results being more accurate than the fourth-best performer. Segmentation time is reduced over manual segmentation by 2.5 and 5 times, depending on the rater. Additional experiments in interactive placenta segmentation in 3D fetal ultrasound illustrate the generalizability of the new functionality to a different problem domain.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Neuroimaging/methods , Software , Algorithms , Humans , Magnetic Resonance Imaging/methods
6.
Med Image Comput Comput Assist Interv ; 10433: 746-754, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29285527

ABSTRACT

Transesophageal echocardiography is the primary imaging modality for preoperative assessment of mitral valves with ischemic mitral regurgitation (IMR). While there are well known echocardiographic insights into the 3D morphology of mitral valves with IMR, such as annular dilation and leaflet tethering, less is understood about how quantification of valve dynamics can inform surgical treatment of IMR or predict short-term recurrence of the disease. As a step towards filling this knowledge gap, we present a novel framework for 4D segmentation and geometric modeling of the mitral valve in real-time 3D echocardiography (rt-3DE). The framework integrates multi-atlas label fusion and template-based medial modeling to generate quantitatively descriptive models of valve dynamics. The novelty of this work is that temporal consistency in the rt-3DE segmentations is enforced during both the segmentation and modeling stages with the use of groupwise label fusion and Kalman filtering. The algorithm is evaluated on rt-3DE data series from 10 patients: five with normal mitral valve morphology and five with severe IMR. In these 10 data series that total 207 individual 3DE images, each 3DE segmentation is validated against manual tracing and temporal consistency between segmentations is demonstrated. The ultimate goal is to generate accurate and consistent representations of valve dynamics that can both visually and quantitatively provide insight into normal and pathological valve function.


Subject(s)
Algorithms , Echocardiography, Three-Dimensional/methods , Mitral Valve Insufficiency/diagnostic imaging , Mitral Valve/diagnostic imaging , Echocardiography, Transesophageal , Humans , Mitral Valve/anatomy & histology , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...