Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 87(6): 063302, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27370442

ABSTRACT

We describe an experiment on the use of a fore-vacuum-pressure, plasma-cathode, electron beam source with current up to 100 mA and beam energy up to 15 keV for deposition of Mg and Al oxide films on Si substrates in an oxygen atmosphere at a pressure of 10 Pa. The metals (Al and Mg) were evaporated and ionized using the electron beam with the formation of a gas-metal beam-plasma. The plasma was deposited on the surface of Si substrates. The elemental composition of the deposited films was analyzed.

2.
Rev Sci Instrum ; 86(12): 123301, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26724016

ABSTRACT

The industrial quadrupole RGA-100 residual gas analyzer was modified for the research of electron beam-generated plasma at forevacuum pressure range. The standard ionizer of the RGA-100 was replaced by three electrode extracting unit. We made the optimization of operation parameters in order to provide the maximum values of measured currents of any ion species. The modified analyzer was successfully tested with beam plasma of argon, nitrogen, oxygen, and hydrocarbons.

3.
Rev Sci Instrum ; 85(8): 083306, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25173261

ABSTRACT

The paper describes the design and principle of operation of an inverse time-of-flight spectrometer for research in the plasma produced by an electron beam in the forevacuum pressure range (5-20 Pa). In the spectrometer, the deflecting plates as well as the drift tube and the primary ion beam measuring system are at high potential with respect to ground. This provides the possibility to measure the mass-charge constitution of the plasma created by a continuous electron beam with a current of up to 300 mA and electron energy of up to 20 keV at forevacuum pressures in the chamber placed at ground potential. Research results on the mass-charge state of the beam plasma are presented and analyzed.

4.
Rev Sci Instrum ; 84(6): 066107, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23822394

ABSTRACT

The energy stored in a resonant cavity was extracted through four output ports and added in phase in a common line. Operation of a single switch provided synchronism and the power portions transmitted through the ports were combined in a waveguide turnstile junction. Estimation shows that the compressor peak power can reach a value eight times as much as the switched wave power, provided the output pulsewidth is shortened by the same factor with reference to the cavity double transit time. The performance of the X-band compressor prototype was investigated. Signals radiated through each of four output ports had identical envelope shapes and equal peak power values. The reflected wave did not accompany the power combining. The pulses of 1.2 MW peak power and 1.6 ns pulse width were obtained when the compressor was driven by the 50 kW pulse power magnetron generator.

5.
Rev Sci Instrum ; 82(4): 046104, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21529048

ABSTRACT

The brief theoretical analysis shows the resonant microwave compressor provides the output pulse power higher than the traveling wave power in the storage cavity. The experimental study was made with the model of the S-band microwave compressor. The power of pulses generated by the device reached the value three times as much as the value of the traveling wave power in the storage cavity at the maximum amplification 23 dB, peak power 400 MW, and pulse width 4-5 ns.

6.
Rev Sci Instrum ; 81(2): 02A501, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20192356

ABSTRACT

This paper presents the results of time-of-flight mass spectrometry studies of the elemental and mass-to-charge state compositions of metal ion beams produced by a vacuum arc ion source with compound cathode (WC-Co(0.5), Cu-Cr(0.25), Ti-Cu(0.1)). We found that the ion beam composition agrees well with the stoichiometric composition of the cathode material from which the beam is derived, and the maximum ion charge state of the different plasma components is determined by the ionization capability of electrons within the cathode spot plasma, which is common to all components. The beam mass-to-charge state spectrum from a compound cathode features a greater fraction of multiply charged ions for those materials with lower electron temperature in the vacuum arc cathode spot, and a smaller fraction for those with higher electron temperature within the spot. We propose a potential diagram method for determination of attainable ion charge states for all components of the compound cathodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...