Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(2): e87704, 2014.
Article in English | MEDLINE | ID: mdl-24503632

ABSTRACT

The design, synthesis and pharmacology of novel long-acting exenatide analogs for the treatment of metabolic diseases are described. These molecules display enhanced pharmacokinetic profile and potent glucoregulatory and weight lowering actions compared to native exenatide. [Leu(14)]exenatide-ABD is an 88 residue peptide amide incorporating an Albumin Binding Domain (ABD) scaffold. [Leu(14)]exenatide-ABP is a 53 residue peptide incorporating a short Albumin Binding Peptide (ABP). [Leu(14)]exenatide-ABD and [Leu(14)]exenatide-ABP exhibited nanomolar functional GLP-1 receptor potency and were metabolically stable in vitro in human plasma and in a pancreatic digestive enzyme mixture. Both molecules displayed picomolar and nanomolar binding association with albumin across multiple species and circulating half lives of 16 and 11 hours, respectively, post a single IV dose in rats. Unlike exenatide, both molecules elicited robust glucose lowering when injected 1 day prior to an oral glucose tolerance test, indicative of their extended duration of action. [Leu(14)]exenatide-ABD was compared to exenatide in a Lep (ob/ob) mouse model of diabetes. Twice-weekly subcutaneously dosed [Leu(14)]exenatide-ABD displayed superior glucose lowering and weight loss in diabetic mice when compared to continuously infused exenatide at the same total weekly dose. A single oral administration of each molecule via an enteric coated capsule to cynomolgus monkeys showed superior pharmacokinetics for [Leu(14)]exenatide-ABD as compared to [Leu(14)]exenatide-ABP with detectable exposure longer than 14 days. These studies support the potential use of these novel long acting exenatide analogs with different routes of administration for the treatment of type 2 diabetes.


Subject(s)
Albumins/chemistry , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Peptides/chemistry , Peptides/pharmacokinetics , Protein Interaction Domains and Motifs , Venoms/chemistry , Venoms/pharmacokinetics , Administration, Oral , Albumins/metabolism , Animals , Binding Sites , Diabetes Mellitus, Experimental , Disease Models, Animal , Drug Stability , Exenatide , Glucagon-Like Peptide-1 Receptor , Glucose Tolerance Test , Humans , Hypoglycemic Agents/metabolism , Kinetics , Macaca fascicularis , Male , Mice , Peptides/metabolism , Protein Binding , Rats , Receptors, Glucagon/metabolism , Venoms/metabolism
2.
J Med Chem ; 53(11): 4412-21, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-20455563

ABSTRACT

Serotonin, which is stored in platelets and is released during thrombosis, activates platelets via the 5-HT(2A) receptor. 5-HT(2A) receptor inverse agonists thus represent a potential new class of antithrombotic agents. Our medicinal program began with known compounds that displayed binding affinity for the recombinant 5-HT(2A) receptor, but which had poor activity when tested in human plasma platelet inhibition assays. We herein describe a series of phenyl pyrazole inverse agonists optimized for selectivity, aqueous solubility, antiplatelet activity, low hERG activity, and good pharmacokinetic properties, resulting in the discovery of 10k (APD791). 10k inhibited serotonin-amplified human platelet aggregation with an IC(50) = 8.7 nM and had negligible binding affinity for the closely related 5-HT(2B) and 5-HT(2C) receptors. 10k was orally bioavailable in rats, dogs, and monkeys and had an acceptable safety profile. As a result, 10k was selected further evaluation and advanced into clinical development as a potential treatment for arterial thrombosis.


Subject(s)
Arteries/drug effects , Benzamides/chemistry , Benzamides/pharmacology , Drug Discovery/methods , Drug Inverse Agonism , Morpholines/chemistry , Morpholines/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Serotonin 5-HT2 Receptor Agonists , Thrombosis/drug therapy , Animals , Benzamides/metabolism , Benzamides/pharmacokinetics , Dogs , Female , Humans , Inhibitory Concentration 50 , Male , Morpholines/metabolism , Morpholines/pharmacokinetics , Platelet Aggregation/drug effects , Pyrazoles/metabolism , Pyrazoles/pharmacokinetics , Rats , Receptor, Serotonin, 5-HT2A/metabolism , Structure-Activity Relationship , Substrate Specificity , Thrombosis/metabolism
3.
J Pharmacol Exp Ther ; 325(2): 577-87, 2008 May.
Article in English | MEDLINE | ID: mdl-18252809

ABSTRACT

5-Hydroxytryptamine (5-HT)(2C) receptor agonists hold promise for the treatment of obesity. In this study, we describe the in vitro and in vivo characteristics of lorcaserin [(1R)-8-chloro-2,3,4,5-tetrahydro-1-methyl-1H-3 benzazepine], a selective, high affinity 5-HT(2C) full agonist. Lorcaserin bound to human and rat 5-HT(2C) receptors with high affinity (K(i) = 15 +/- 1 nM, 29 +/- 7 nM, respectively), and it was a full agonist for the human 5-HT(2C) receptor in a functional inositol phosphate accumulation assay, with 18- and 104-fold selectivity over 5-HT(2A) and 5-HT(2B) receptors, respectively. Lorcaserin was also highly selective for human 5-HT(2C) over other human 5-HT receptors (5-HT(1A), 5-HT(3), 5-HT(4C), 5-HT5(5A), 5-HT(6), and 5-HT(7)), in addition to a panel of 67 other G protein-coupled receptors and ion channels. Lorcaserin did not compete for binding of ligands to serotonin, dopamine, and norepinephrine transporters, and it did not alter their function in vitro. Behavioral observations indicated that unlike the 5-HT(2A) agonist (+/-)-1-(2,5-dimethoxy-4-phenyl)-2-aminopropane, lorcaserin did not induce behavioral changes indicative of functional 5-HT(2A) agonist activity. Acutely, lorcaserin reduced food intake in rats, an effect that was reversed by pretreatment with the 5-HT(2C)-selective antagonist 6-chloro-5-methyl-1-[6-(2-methylpyridin-3-yloxy)pyridin-3-yl-carbamoyl]indoline (SB242,084) but not the 5-HT(2A) antagonist (R)-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol (MDL 100,907), demonstrating mediation by the 5-HT(2C) receptor. Chronic daily treatment with lorcaserin to rats maintained on a high fat diet produced dose-dependent reductions in food intake and body weight gain that were maintained during the 4-week study. Upon discontinuation, body weight returned to control levels. These data demonstrate lorcaserin to be a potent, selective, and efficacious agonist of the 5-HT(2C) receptor, with potential for the treatment of obesity.


Subject(s)
Benzazepines/pharmacology , Eating/drug effects , Serotonin 5-HT2 Receptor Agonists , Serotonin Receptor Agonists/pharmacology , Aminopyridines/pharmacology , Animals , Behavior, Animal/drug effects , Benzazepines/blood , Benzazepines/pharmacokinetics , Body Weight/drug effects , Brain/drug effects , Brain/metabolism , Cell Line , Dopamine/metabolism , Fluorobenzenes/pharmacology , Humans , Indoles/pharmacology , Male , Norepinephrine/metabolism , Obesity/drug therapy , Obesity/physiopathology , Piperidines/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2C/physiology , Recombinant Proteins/agonists , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Serotonin/metabolism , Serotonin 5-HT2 Receptor Antagonists , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/blood , Serotonin Receptor Agonists/pharmacokinetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...