Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36984377

ABSTRACT

The effect of Mo thin film deposition power in DC sputtering on the formation of a MoSe2 interfacial layer grown via the annealing of CIGSe/Mo precursors in an Se-free atmosphere was investigated. A Mo layer was deposited on glass substrates using the DC magnetron sputtering method. Its electrical resistivity, as well as its morphological, structural, and adhesion characteristics, were analyzed regarding the deposition power. In the case of thinner films of about 300 nm deposited at 80 W, smaller grains and a lower volume percentage of grain boundaries were found, compared to 510 nm thick film with larger agglomerates obtained at 140 W DC power. By increasing the deposition power, in contrast, the conductivity of the Mo film significantly improved with lowest sheet resistance of 0.353 Ω/square for the sample deposited at 140 W. Both structural and Raman spectroscopy outputs confirmed the pronounced formation of MoSe2, resulting from Mo films with predominant (110) orientated planes. Sputtered Mo films deposited at 140 W power improved Mo crystals and the growth of MoSe2 layers with a preferential (103) orientation upon the Se-free annealing. With a more porous Mo surface structure for the sample deposited at higher power, a larger contact area developed between the Mo films and the Se compound was found from the CIGSe film deposited on top of the Mo, favoring the formation of MoSe2. The CIGSe/Mo hetero-contact, including the MoSe2 layer with controlled thickness, is not Schottky-type, but a favourable ohmic-type, as evaluated by the dark I-V measurement at room temperature (RT). These findings support the significance of regulating the thickness of the unintentional MoSe2 layer growth, which is attainable by controlling the Mo deposition power. Furthermore, while the adhesion between the CIGSe absorber layer and the Mo remains intact, the resistance of final devices with the Ni/CIGSe/Mo structure was found to be directly linked to the MoSe2 thickness. Consequently, it addresses the importance of MoSe2 structural properties for improved CIGSe solar cell performance and stability.

2.
RSC Adv ; 10(22): 12851-12863, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-35492106

ABSTRACT

Nowadays, chemotherapy is one of the crucial and common therapies in the world. So far, it has been revealed to be highly promising, yet patients suffer from the consequences of severe negative medical dosages. In order to overcome these issues, the enhancement of photothermal chemotherapy with reduced graphene oxide (rGO) as a photothermal agent (PTA) is widely utilised in current medical technologies. This is due to its high near-infrared region (NIR) response, in vitro or in vivo organism biocompatibility, low risk of side effects, and effective positive results. Moreover, rGO not only has the ability to ensure that selective cancer cells have a higher mortality rate but can also improve the growth rate of recovering tissues that are untouched by necrosis and apoptosis. These two pathways are specific diverse modalities of cell death that are distinguished by cell membrane disruption and deoxyribonucleic acid (DNA) disintegration of the membrane via phosphatidylserine exposure in the absence of cell membrane damage. Therefore, this review aimed to demonstrate the recent achievements in the modification of rGO nanoparticles as a PTA as well as present a new approach for performing photochemotherapy in the clinical setting.

3.
J Nanosci Nanotechnol ; 15(11): 9240-5, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26726675

ABSTRACT

Many high efficiency thin-film solar cells incorporate a thin layer of CdS in the device structure to form a heterojunction. Chemical bath deposition (CBD) is the most preferred method of deposition especially for large area thin film solar cells. This study explored the effects of ammonium sulfate on the CdS film produced by CBD using cadmium sulfate as the cadmium source. The concentration of ammonium sulfate was varied from 0 M up to 0.006 M. The resulting optical, structural and surface morphological properties of the films were characterized. Results have shown that the films obtained at higher concentrations of ammonium sulfate were smoother and the occurrence of pinholes was also reduced. Agglomeration of CdS particles that is usually present in films deposited using cadmium sulfate as a precursor was also noticeably reduced. It was also observed that the rate of deposition also increased, resulting in a thicker film for identical deposition time and temperature. The average thickness of the films produced ranged from 60 nm to 180 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...