Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202409099, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38924238

ABSTRACT

Achieving enhanced or blue-shifted emission from piezochromic materials remains a major challenge. Covalent organic frameworks (COFs) are promising candidates for the development of piezochromic materials owing to their dynamic structures and adjustable optical properties, where the emission behaviors are not solely determined by the functional groups, but are also greatly influenced by the specific geometric arrangement. Nevertheless, this area remains relatively understudied. In this study, a successful synthesis of a series of bicarbazole-based COFs with varying topologies, dimensions, and linkages was conducted, followed by an investigation of their structural and emission properties under hydrostatic pressure generated by a diamond anvil cell. Consequently, these COFs exhibited distinct piezochromic behaviors, particularly a remarkable pressure-induced emission enhancement (PIEE) phenomenon with a 16-fold increase in fluorescence intensity from three-dimensional COFs, surpassing the performance of CPMs and most organic small molecules with PIEE behavior. On the contrary, three two-dimensional COFs with flexible structures exhibited rare blue-shifted emission, whereas the variants with rigid and conjugated structures showed common red-shifted and reduced emission. Mechanism research further revealed that these different piezochromic behaviors were primarily determined by interlayer distance and interaction.

2.
Nanomaterials (Basel) ; 14(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38392702

ABSTRACT

Due to their large surface area and pore volume, three-dimensional covalent organic frameworks (3D COFs) have emerged as competitive porous materials. However, structural dynamic behavior, often observed in imine-linked 3D COFs, could potentially unlock their potential application in gas storage. Herein, we showed how a pre-locked linker strategy introduces breaking dynamic behavior in 3D COFs. A predesigned planar linker-based 3,8-diamino-6-phenylphenanthridine (DPP) was prepared to produce non-dynamic 3D JUC-595, as the benzylideneamine moiety in DPP locked the linker flexibility and restricted the molecular bond rotation of the imine linkages. Upon solvent inclusion and release, the PXRD profile of JUC-595 remained intake, while JUC-594 with a flexible benzidine linker experienced crystal transformation due to framework contraction-expansion. As a result, the activated JUC-595 achieved higher surface areas (754 m2 g-1) than that of JUC-594 (548 m2 g-1). Furthermore, improved CO2 and CH4 storages were also seen in JUC-595 compared with JUC-594. Impressively, JUC-595 recorded a high normalized H2 storage capacity that surpassed other reported high-surface area 3D COFs. This works shows important insights on manipulating the structural properties of 3D COF to tune gas storage performance.

3.
ACS Appl Mater Interfaces ; 16(5): 5869-5880, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38277475

ABSTRACT

Structural conjugation greatly affects the optical and electronic properties of the COF photocatalyst. Herein, we show that 2D hydrazone COFs with either π-extended biphenyl (BPh-COF) or acetylene (AC-COF) frameworks demonstrated distinct charge transfer and photocatalytic performances. The two COFs show good crystallinity and decent porosity as their frameworks are enforced by intra/interlayers hydrogen bonding. However, computational and experimental data reveal that AC-COF managed broader visible-light absorption and narrower optical bandgaps and performed efficient photoinduced charge separation and transfer in comparison with BPh-COF, meaning that the ethynyl skeleton with enhanced planarity better improves the π-conjugation of the whole structure. As a result, AC-COF exhibited an ideal bandgap for rapid oxidative coupling of amines under visible-light irradiation. Furthermore, taking advantage of its better charge transfer properties, AC-COF demonstrated considerable enhanced product conversion and notable functional tolerance for metallaphotocatalytic C-O cross-coupling of a wide range of both aryl bromides and chlorides with alcohols. More importantly, besides being recoverable, AC-COF showcased the previously inaccessible etherification of dihaloarene. This report shows a facile approach for manipulating the structure-activity relationship and paves the way for the development of a COF photocatalyst for solar-to-chemical energy conversion.

4.
J Org Chem ; 88(13): 8522-8531, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37303203

ABSTRACT

[1n]Paracyclophane has been known for nearly 40 years, but its derivatives and properties are understudied in comparison to those of other macrocyclic compounds. By the modification of pillar[5]arene, we successfully obtained five electron-rich pentagonal macrocycles (pseudo[n]-pillar[5]arenes, n = 1-4) with the decrease of substituted phenylenes one after another, achieving the partial derivatization of [15]paracyclophane skeleton at its phenylene sites. Pseudo[n]-pillar[5]arenes (P[n]P[5]s) served as a kind of macrocyclic host to form complexes with various guests, such as dinitriles, dihaloalkanes, and imidazolium salt, in a 1:1 host-guest stoichiometric ratio. The binding constants with the guest gradually reduce along the decrease of substituted phenylene segments from host P[1]P[5] to P[4]P[5]. It is worthy to note that P[n]P[5]s can adjust their conformations to the "pillar-like" shape effectively when binding with succinonitrile in the solid state.


Subject(s)
Macrocyclic Compounds , Macrocyclic Compounds/chemistry , Molecular Conformation
5.
Angew Chem Int Ed Engl ; 62(27): e202304234, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37134296

ABSTRACT

Piezochromic materials with pressure-dependent photoluminescence tuning properties are important in many fields, such as mechanical sensors, security papers, and storage devices. Covalent organic frameworks (COFs), as an emerging class of crystalline porous materials (CPMs) with structural dynamics and tunable photophysical properties, are suitable for designing piezochromic materials, but there are few related studies. Herein, we report two dynamic three-dimensional COFs based on aggregation-induced emission (AIE) or aggregation-caused quenching (ACQ) chromophores, termed JUC-635 and JUC-636 (JUC=Jilin University China), and for the first time, study their piezochromic behavior by diamond anvil cell technique. Due to the various luminescent groups, JUC-635 has completely different solvatochromism and molecular aggregation behavior in the solvents. More importantly, JUC-635 with AIE effect exhibits a sustained fluorescence upon pressure increase (≈3 GPa), and reversible sensitivity with high-contrast emission differences (Δλem =187 nm) up to 12 GPa, superior to other CPMs reported so far. Therefore, this study will open a new gate to expand the potential applications of COFs as exceptional piezochromic materials in pressure sensing, barcoding, and signal switching.

6.
Small ; 19(32): e2303069, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37165759

ABSTRACT

Amination of aryl chlorides by metallaphotocatalysis is highly desired but remains practically challenging. Meanwhile, relying on soluble noble-metal photocatalysts suffers from resource scarcity and structural instability which limit their practical application. Here in, a highly crystalline acetylene-based hydrazone-linked covalent organic framewok-1 (AC-COF-1) is reported that enables metallaphotocatalytic amination of aryl chlorides. The non-planar effect of hydrazone linkage and weak interlayer attraction of acetylene bond are minimized by intralayer hydrogen-bonding. As a result, the COF shows not only improved crystallinity and porosity, but also enhanced optical and electronic properties compared to a COF analog without hydrogen-bonding. Notably, dual AC-COF-1/Ni system affords CN coupling products from broad aryl chloride substrates in excellent yields (up to 99%) and good functional tolerance. Furthermore, AC-COF-1 is recoverable and reusable for seven times photocatalysis cycles. This report demonstrates simple approach to tune the structure-activity relationship in COFs at molecular level.

7.
Saudi J Biol Sci ; 30(4): 103593, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36879672

ABSTRACT

Schizophyllum commune Fr. is a wild macro fungus species, which is often used as a food source by the indigenous Kaili tribe along the Palu-Koro fault, Central Sulawesi, Indonesia. This fungus has a wide variety in terms of the weathered wood substrate as a place to grow and is found in almost all types of ecosystems. Although its diversity has been investigated, there is no identification of the weathered wood type as a substrate for growth. Some communities in Indonesia have not also known its potential and benefits. Therefore, this research aims to determine the wood type that grows S. commune fungus, ethnomycology, mineral composition, proximate, and phytochemical compounds. It was carried out using the descriptive explanatory approach and the fungi location as well as wood substrate sampling, was determined through the purposive sampling technique in forest areas, agroforestry, and community gardens along the Palu-Koro fault, Central Sulawesi. The samples of unknown wood types were through the collection of tree parts, namely twigs, leaves, flowers, and fruits, which were brought to Herbarium Celebense, Tadulako University for identification. Analysis of mineral content, proximate, and fungal phytochemical compounds was carried out based on the method according to the existing protocol. The results showed that 92 types of rotted wood found where the fungus S. commune grew, belonged to 36 families. The nutritional content is also good, although it varies based on the type of wood growing media. Therefore, it can be used and processed into various health-beneficial food products. This showed that domestication of the fungus needs to be carried out to support its commercialization as food and medicine in the future.

8.
Adv Mater ; 32(44): e2002038, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32638452

ABSTRACT

Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers with tailorable compositions, porosities, functionalities, and intrinsic chemical stability. The incorporation of electroactive moieties in the structure transforms COFs into electroactive materials with great potential for energy-related applications. Herein, the recent advances in the design and use of electroactive COFs as capacitors, batteries, conductors, fuel cells, water-splitting, and electrocatalysis are addressed. Their remarkable performance is discussed and compared with other porous materials; hence, perspectives in the development of electroactive COFs are presented.

9.
Adv Mater ; 32(8): e1907289, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31944440

ABSTRACT

The electrochemical double-layer capacitors (EDLCs) are highly demanded electrical energy storage devices due to their high power density with thousands of cycle life compared with pseudocapacitors and batteries. Herein, a series of capacitor cells composed of exfoliated mesoporous 2D covalent organic frameworks (e-COFs) that are able to perform excellent double-layer charge storage is reported. The selected mesoporous 2D COFs possess eclipsed AA layer-stacking mode with 3.4 nm square-like open channels, favorable BET surface areas (up to 1170 m2 g-1 ), and high thermal and chemical stabilities. The COFs via the facile, scalable, and mild chemical exfoliation method are further exfoliated to produce thin-layer structure with average thickness of about 22 nm. The e-COF-based capacitor cells achieve high areal capacitance (5.46 mF cm-2 at 1,000 mV s-1 ), high gravimetric power (55 kW kg-1 ), and relatively low τ0 value (121 ms). More importantly, they perform nearly an ideal DL charge storage at high charge-discharge rate (up to 30 000 mV s-1 ) and maintain almost 100% capacitance stability even after 10 000 cycles. This study thus provides insights into the potential utilization of COF materials for EDLCs.

10.
Natl Sci Rev ; 7(1): 170-190, 2020 Jan.
Article in English | MEDLINE | ID: mdl-34692030

ABSTRACT

Covalent organic frameworks (COFs) have been at the forefront of porous-material research in recent years. With predictable structural compositions and controllable functionalities, the structures and properties of COFs could be controlled to achieve targeted materials. On the other hand, the predesigned structure of COFs allows fruitful postsynthetic modifications to introduce new properties and functions. In this review, the postsynthetic functionalizations of COFs are discussed and their impacts towards structural qualities and performances are comparatively elaborated on. The functionalization involves the formation of specific interactions (covalent or coordination/ionic bonds) and chemical reactions (oxidation/reduction reaction) with pendant groups, skeleton and reactive linkages of COFs. The chemical stability and performance of COFs including catalytic activity, storage, sorption and opto-electronic properties might be enhanced by specific postsynthetic functionalization. The generality of these strategies in terms of chemical reactions and the range of suitable COFs places them as a pivotal role for the development of COF-based smart materials.

11.
Dalton Trans ; 48(21): 7352-7357, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-30924837

ABSTRACT

Covalent organic frameworks (COFs) are crystalline porous solids with broad potential applications. So far, the successful construction of COFs has been limited to a few condensation reactions, and nearly all COFs were obtained by single-step synthesis based on predesigned linkers. Here, we report a general strategy in view of a one-pot cascade reaction to prepare both microporous and mesoporous fully π-conjugated pyrazine-linked COF materials (PZ-COFs). The obtained PZ-COFs show high chemical stability, large specific surface areas and promising H2, CH4 and CO2 uptake capacities. Furthermore, we demonstrate that manganese(ii)-incorporated PZ-COFs can act as excellent Lewis-acid catalysts for the cyanosilylation of aromatic aldehydes. This study not only provides a facile method to synthesize COFs required for multistep reactions but also expands the applications of COFs as promising catalysts.

12.
J Am Chem Soc ; 140(13): 4494-4498, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29553727

ABSTRACT

Covalent organic frameworks (COFs) are an emerging class of porous crystalline polymers with wide range of potential applications. However, the availability of three-dimensional (3D) COFs is still limited, and their synthesis is confined to the high-temperature solvothermal method. Here, we report for the first time a general and simple strategy to produce a series of 3D ionic liquid (IL)-containing COFs (3D-IL-COFs) by using IL as a green solvent. The syntheses are carried out at ambient temperature and pressure accompanied by a high reaction speed (e.g., only three mins for 3D-IL-COF-1), and the IL can be reused without activity loss. Furthermore, the 3D-IL-COFs show impressive performance in the separation of CO2/N2 and CO2/CH4. This research thus presents a potential pathway to green large-scale industrial production of COFs.

13.
Angew Chem Int Ed Engl ; 57(21): 6042-6048, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29457858

ABSTRACT

Chemical functionalization of covalent organic frameworks (COFs) is critical for tuning their properties and broadening their potential applications. However, the introduction of functional groups, especially to three-dimensional (3D) COFs, still remains largely unexplored. Reported here is a general strategy for generating a 3D carboxy-functionalized COF through postsynthetic modification of a hydroxy-functionalized COF, and for the first time exploration of the 3D carboxy-functionalized COF in the selective extraction of lanthanide ions. The obtained COF shows high crystallinity, good chemical stability, and large specific surface area. Furthermore, the carboxy-functionalized COF displays high metal loading capacities together with excellent adsorption selectivity for Nd3+ over Sr2+ and Fe3+ as confirmed by the Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. This study not only provides a strategy for versatile functionalization of 3D COFs, but also opens a way to their use in environmentally related applications.

14.
J Am Chem Soc ; 139(49): 17771-17774, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29179538

ABSTRACT

Covalent organic frameworks (COFs) have emerged as functional materials for various potential applications. However, the availability of three-dimensional (3D) COFs is still limited, and nearly all of them exhibit neutral porous skeletons. Here we report a general strategy to design porous positively charged 3D ionic COFs by incorporation of cationic monomers in the framework. The obtained 3D COFs are built of 3-fold interpenetrated diamond net and show impressive surface area and CO2 uptakes. The ion-exchange ability of 3D ionic COFs has been highlighted by reversible removal of nuclear waste model ions and excellent size-selective capture for anionic pollutants. This research thereby provides a new perspective to explore 3D COFs as a versatile type of ion-exchange materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...