Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 13(8): 681, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35931686

ABSTRACT

The accumulation of senescent cells is a key characteristic of aging, leading to the progression of age-related diseases such as osteoarthritis (OA). Previous data from our laboratory has demonstrated that high levels of the transmembrane protein connexin 43 (Cx43) are associated with a senescent phenotype in chondrocytes from osteoarthritic cartilage. OA has been reclassified as a musculoskeletal disease characterized by the breakdown of the articular cartilage affecting the whole joint, subchondral bone, synovium, ligaments, tendons and muscles. However, the mechanisms that contribute to the spread of pathogenic factors throughout the joint tissues are still unknown. Here, we show for the first time that small extracellular vesicles (sEVs) released by human OA-derived chondrocytes contain high levels of Cx43 and induce a senescent phenotype in targeted chondrocytes, synovial and bone cells contributing to the formation of an inflammatory and degenerative joint environment by the secretion of senescence-associated secretory associated phenotype (SASP) molecules, including IL-1ß and IL-6 and MMPs. The enrichment of Cx43 changes the protein profile and activity of the secreted sEVs. Our results indicate a dual role for sEVs containing Cx43 inducing senescence and activating cellular plasticity in target cells mediated by NF-kß and the extracellular signal-regulated kinase 1/2 (ERK1/2), inducing epithelial-to-mesenchymal transition (EMT) signalling programme and contributing to the loss of the fully differentiated phenotype. Our results demonstrated that Cx43-sEVs released by OA-derived chondrocytes spread senescence, inflammation and reprogramming factors involved in wound healing failure to neighbouring tissues, contributing to the progression of the disease among cartilage, synovium, and bone and probably from one joint to another. These results highlight the importance for future studies to consider sEVs positive for Cx43 as a new biomarker of disease progression and new target to treat OA.


Subject(s)
Extracellular Vesicles , Osteoarthritis , Chondrocytes/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Extracellular Vesicles/metabolism , Humans , Osteoarthritis/pathology , Phenotype
2.
Cell Death Dis ; 13(2): 163, 2022 02 19.
Article in English | MEDLINE | ID: mdl-35184131

ABSTRACT

During this last decade, the development of prosenescence therapies has become an attractive strategy as cellular senescence acts as a barrier against tumour progression. In this context, CDK4/6 inhibitors induce senescence and reduce tumour growth in breast cancer patients. However, even though cancer cells are arrested after CDK4/6 inhibitor treatment, genes regulating senescence in this context are still unknown limiting their antitumour activity. Here, using a functional genome-wide CRISPR/Cas9 genetic screen we found several genes that participate in the proliferation arrest induced by CDK4/6 inhibitors. We find that downregulation of the coagulation factor IX (F9) using sgRNA and shRNA prevents the cell cycle arrest and senescent-like phenotype induced in MCF7 breast tumour cells upon Palbociclib treatment. These results were confirmed using another breast cancer cell line, T47D, and with an alternative CDK4/6 inhibitor, Abemaciclib, and further tested in a panel of 22 cancer cells. While F9 knockout prevents the induction of senescence, treatment with a recombinant F9 protein was sufficient to induce a cell cycle arrest and senescence-like state in MCF7 tumour cells. Besides, endogenous F9 is upregulated in different human primary cells cultures undergoing senescence. Importantly, bioinformatics analysis of cancer datasets suggest a role for F9 in human tumours. Altogether, these data collectively propose key genes involved in CDK4/6 inhibitor response that will be useful to design new therapeutic strategies in personalised medicine in order to increase their efficiency, stratify patients and avoid drug resistance.


Subject(s)
Breast Neoplasms , Cyclin-Dependent Kinase 6 , Factor IX , Breast Neoplasms/genetics , Breast Neoplasms/pathology , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cellular Senescence/genetics , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/metabolism , Factor IX/genetics , Female , Humans , MCF-7 Cells
3.
Chemosphere ; 215: 261-271, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30317097

ABSTRACT

Bioaccumulation of six perfluoroalkyl substances (PFAS) was assessed using the marine echinoderm Holothuria tubulosa Gmelin, 1791. Batch experiments were conducted to establish the relationship between concentrations in water, sediment and biota over 197 days. The sample treatment for the determination of compounds involves steps of lyophilization, solvent extraction and clean-up of the extracts with dispersive sorbents. PFAS were then analysed by liquid chromatography-tandem mass spectrometry. During contaminant exposure, detectable levels of compounds were found in all samples collected. Mean concentrations of selected PFAS were higher in sediments than in water samples. This fact is explained by the strong adsorption of these compounds into sediments. Sediment-water distribution coefficients (log Kd) were in the range 0.11 (PFBuA) to 2.46 (PFOA). Beside this, PFAS accumulation was observed in Holothuria tubulosa organisms. The uptake of PFAS was very rapid, reaching the maximum between 22 and 38 days of assay. Bioaccumulation factors (mean log BAF: 1.16-4.39) and biota sediment accumulation factors (mean log BSAF: 1.37-2.89) indicated a high bioaccumulation potential for the target compounds. Both parameters increased with perfluoroalkyl chain length (R2 > 0.93; p < 0.05). In organ-specific distributions of PFAS, greater concentrations were found in intestine than in gonads. Also, male specimens showed higher concentration levels than female (student t-test: tcal = 2.788, ttab = 2.262; p < 0.05). These data provide a detailed accounting of PFAS fate and distribution in the marine environment highlighting accumulation at lower trophic levels, a potential source for contamination in higher organisms.


Subject(s)
Environmental Monitoring/methods , Fluorocarbons/pharmacokinetics , Holothuria/metabolism , Animals , Biota , Chromatography, Liquid , Female , Fluorocarbons/analysis , Geologic Sediments/chemistry , Laboratories , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...