Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 30(5): e17305, 2024 May.
Article in English | MEDLINE | ID: mdl-38712651

ABSTRACT

Anthropogenic climate change is altering precipitation regimes at a global scale. While precipitation changes have been linked to changes in the abundance and diversity of soil and litter invertebrate fauna in forests, general trends have remained elusive due to mixed results from primary studies. We used a meta-analysis based on 430 comparisons from 38 primary studies to address associated knowledge gaps, (i) quantifying impacts of precipitation change on forest soil and litter fauna abundance and diversity, (ii) exploring reasons for variation in impacts and (iii) examining biases affecting the realism and accuracy of experimental studies. Precipitation reductions led to a decrease of 39% in soil and litter fauna abundance, with a 35% increase in abundance under precipitation increases, while diversity impacts were smaller. A statistical model containing an interaction between body size and the magnitude of precipitation change showed that mesofauna (e.g. mites, collembola) responded most to changes in precipitation. Changes in taxonomic richness were related solely to the magnitude of precipitation change. Our results suggest that body size is related to the ability of a taxon to survive under drought conditions, or to benefit from high precipitation. We also found that most experiments manipulated precipitation in a way that aligns better with predicted extreme climatic events than with predicted average annual changes in precipitation and that the experimental plots used in experiments were likely too small to accurately capture changes for mobile taxa. The relationship between body size and response to precipitation found here has far-reaching implications for our ability to predict future responses of soil biodiversity to climate change and will help to produce more realistic mechanistic soil models which aim to simulate the responses of soils to global change.


Subject(s)
Body Size , Climate Change , Forests , Rain , Soil , Animals , Soil/chemistry , Biodiversity , Invertebrates/physiology
2.
Glob Chang Biol ; 29(22): 6336-6349, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37688536

ABSTRACT

Forest decline events have increased worldwide over the last decades being holm oak (Quercus ilex L.) one of the tree species with the most worrying trends across Europe. Since this is one of the tree species with the southernmost distribution within the European continent, its vulnerability to climate change is a phenomenon of enormous ecological importance. Previous research identified drought and soil pathogens as the main causes behind holm oak decline. However, despite tree health loss is a multifactorial phenomenon where abiotic and biotic factors interact in time and space, there are some abiotic factors whose influence has been commonly overlooked. Here, we evaluate how land use (forests versus savannas), topography, and climate extremes jointly determine the spatiotemporal patterns of holm oak defoliation trends over almost three decades (1987-2014) in Spain, where holm oak represents the 25% of the national forested area. We found an increasing defoliation trend in 119 out of the total 134 holm oak plots evaluated, being this defoliation trend significantly higher in forests compared with savannas. Moreover, we have detected that the interaction between topography (which covariates with the land use) and summer precipitation anomalies explains trends of holm oak decline across the Mediterranean region. While a higher occurrence of dry summers increases defoliation trends in steeper terrains where forests dominate, an inverse relationship was found in flatter terrains where savannas are mainly located. These opposite relationships suggest different causal mechanisms behind decline. Whereas hydric stress is likely to occur in steeper terrains where soil water holding capacity is limited, soil waterlogging usually occurs in flatter terrains what increases tree vulnerability to soil pathogens. Our results contribute to the growing evidence of the influence of local topography on forest resilience and could assist in the identification of potential tree decline hotspots and its main causes over the Mediterranean region.

3.
Ecol Appl ; 32(5): e2589, 2022 07.
Article in English | MEDLINE | ID: mdl-35333426

ABSTRACT

Tree-ring data has been widely used to inform about tree growth responses to drought at the individual scale, but less is known about how tree growth sensitivity to drought scales up driving changes in forest dynamics. Here, we related tree-ring growth chronologies and stand-level forest changes in basal area from two independent data sets to test if tree-ring responses to drought match stand forest dynamics (stand basal area growth, ingrowth, and mortality). We assessed if tree growth and changes in forest basal area covary as a function of spatial scale and tree taxa (gymnosperm or angiosperm). To this end, we compared a tree-ring network with stand data from the Spanish National Forest Inventory. We focused on the cumulative impact of drought on tree growth and demography in the period 1981-2005. Drought years were identified by the Standardized Precipitation Evapotranspiration Index, and their impacts on tree growth by quantifying tree-ring width reductions. We hypothesized that forests with greater drought impacts on tree growth will also show reduced stand basal area growth and ingrowth and enhanced mortality. This is expected to occur in forests dominated by gymnosperms on drought-prone regions. Cumulative growth reductions during dry years were higher in forests dominated by gymnosperms and presented a greater magnitude and spatial autocorrelation than for angiosperms. Cumulative drought-induced tree growth reductions and changes in forest basal area were related, but initial stand density and basal area were the main factors driving changes in basal area. In drought-prone gymnosperm forests, we observed that sites with greater growth reductions had lower stand basal area growth and greater mortality. Consequently, stand basal area, forest growth, and ingrowth in regions with large drought impacts was significantly lower than in regions less impacted by drought. Tree growth sensitivity to drought can be used as a predictor of gymnosperm demographic rates in terms of stand basal area growth and ingrowth at regional scales, but further studies may try to disentangle how initial stand density modulates such relationships. Drought-induced growth reductions and their cumulative impacts have strong potential to be used as early-warning indicators of regional forest vulnerability.


Subject(s)
Magnoliopsida , Trees , Climate Change , Droughts , Forests
4.
Ecol Evol ; 2(12): 3016-31, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23301169

ABSTRACT

The aim of this study was to understand how drought-induced tree mortality and subsequent secondary succession would affect soil bacterial taxonomic composition as well as soil organic matter (SOM) quantity and quality in a mixed Mediterranean forest where the Scots pine (Pinus sylvestris) population, affected by climatic drought-induced die-off, is being replaced by Holm-oaks (HO; Quercus ilex). We apply a high throughput DNA pyrosequencing technique and (13)C solid-state Nuclear Magnetic Resonance (CP-MAS (13)C NMR) to soils within areas of influence (defined as an surface with 2-m radius around the trunk) of different trees: healthy and affected (defoliated) pines, pines that died a decade ago and healthy HOs. Soil respiration was also measured in the same spots during a spring campaign using a static close-chamber method (soda lime). A decade after death, and before aerial colonization by the more competitive HOs have even taken place, we could not find changes in soil C pools (quantity and/or quality) associated with tree mortality and secondary succession. Unlike C pools, bacterial diversity and community structure were strongly determined by tree mortality. Convergence between the most abundant taxa of soil bacterial communities under dead pines and colonizer trees (HOs) further suggests that physical gap colonization was occurring below-ground before above-ground colonization was taken place. Significantly higher soil respiration rates under dead trees, together with higher bacterial diversity and anomalously high representation of bacteria commonly associated with copiotrophic environments (r-strategic bacteria) further gives indications of how drought-induced tree mortality and secondary succession were influencing the structure of microbial communities and the metabolic activity of soils.

5.
Ecol Appl ; 20(6): 1569-82, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20945760

ABSTRACT

We seek to understand how biophysical factors such as soil temperature (Ts), soil moisture (theta), and gross primary production (GPP) influence CO2 fluxes across terrestrial ecosystems. Recent advancements in automated measurements and remote-sensing approaches have provided time series in which lags and relationships among variables can be explored. The purpose of this study is to present new applications of continuous measurements of soil CO2 efflux (F0) and soil CO2 concentrations measurements. Here we explore how variation in Ts, theta, and GPP (derived from NASA's moderate-resolution imaging spectroradiometer [MODIS]) influence F0 and soil CO2 production (Ps). We focused on seasonal variation and used continuous measurements at a daily timescale across four vegetation types at 13 study sites to quantify: (1) differences in seasonal lags between soil CO2 fluxes and Ts, theta, and GPP and (2) interactions and relationships between CO2 fluxes with Ts, theta, and GPP. Mean annual Ts did not explain annual F0 and Ps among vegetation types, but GPP explained 73% and 30% of the variation, respectively. We found evidence that lags between soil CO2 fluxes and Ts or GPP provide insights into the role of plant phenology and information relevant about possible timing of controls of autotrophic and heterotrophic processes. The influences of biophysical factors that regulate daily F0 and Ps are different among vegetation types, but GPP is a dominant variable for explaining soil CO2 fluxes. The emergence of long-term automated soil CO2 flux measurement networks provides a unique opportunity for extended investigations into F0 and Ps processes in the near future.


Subject(s)
Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Soil Microbiology , Soil/analysis , Ecosystem , Seasons , Temperature , Time , Trees , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...