Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 854: 158820, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36116668

ABSTRACT

The mining sector contributes to 4-7 % of global GHG emissions, of which 1 % are from scope 1 and scope 2 emissions, caused by operations such as electricity consumption used for the mining process. China heavily relies on coal for power generation, and the energy demand for coal production in the country is primarily met by fossil-based electricity. In addition, the transportation of the mined coal to various destinations within the supply chain is achieved by fossil fuel-powered transport systems. These daily activities of the Chinese coal sector further compound foreign and domestic pressure on China to limit its carbon emissions. The current study attempts to provide a solution to the situation by investigating the feasibility of adopting renewable energy sources for the process of coal mining in Northern China. The selected coal mine is one out of 643 coal mines in Shanxi Province, with a combined production capacity of ∼1 billion tonnes of coal per annum. In addition, the excess electricity generated has been designated to produce hydrogen on-site as a refueling source for hydrogen fuelled-trucks to replace diesel fuelled-trucks in transporting coal. The analysis has been completed using HOMER Pro software, and the key contributions are summarized as follows. 4 different scenarios comprising of standalone solar photovoltaic, wind turbine, and diesel generator have been designed in the current study to serve a daily load of 215 MWh and 2.4 t of electricity for coal mining and hydrogen for transport of 100 % of the mined coal by road using hydrogen fuel cell trucks, respectively. A technical, economic, environmental, and social feasibility analysis have been investigated in the present work. A grid-tied system is subsequently added to the base scenario and the results are compared against the base system in an attempt to identify the more feasible option between the two systems. Also, a sensitivity analysis has been conducted to reveal the performance of the base system amidst future uncertainties. The findings in the current work could prove beneficial to China's quest to reach carbon peak by 2030 and achieve carbon neutrality by 2060.

2.
Article in English | MEDLINE | ID: mdl-35886280

ABSTRACT

Energy recovery from waste presents a promising alternative for several countries, including Ghana, which has struggled with unsustainable waste treatment methods and an inadequate power supply for several decades. The current study adopts a comprehensive multi-criteria decision-making approach for the selection of an optimal waste-to-energy (WtE) technology for implementation in Ghana. Four WtE technologies are evaluated against twelve selection criteria. An integrated AHP-fuzzy TOPSIS method is applied to estimate the criteria's weights and rank the WtE alternatives. From the AHP results, technical criteria obtained the highest priority weight, while social criteria emerged as the least important in the selection process. The overall ranking order of WtE technologies obtained by fuzzy TOPSIS is as follows: anaerobic digestion > gasification > pyrolysis > plasma gasification. The sensitivity analysis indicates highly consistent and sturdy results regarding the optimal selection. This study recommends adopting a hybrid system of anaerobic digestion and gasification technologies, as this offers a well-balanced system under all of the evaluation criteria compared to the standalone systems. The results of the current study may help the government of Ghana and other prospective investors select a suitable WtE technology, and could serve as an index system for future WtE research in Ghana.


Subject(s)
Refuse Disposal , Waste Management , Feasibility Studies , Ghana , Prospective Studies , Refuse Disposal/methods , Technology , Waste Management/methods
3.
Nanomaterials (Basel) ; 12(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35564226

ABSTRACT

The first part of the current review highlights the evolutionary nuances and research hotspots in the field of nanoparticles in low carbon fuels. Our findings reveal that contribution to the field is largely driven by researchers from Asia, mainly India. Of the three biofuels under review, biodiesel seems to be well studied and developed, whereas studies regarding vegetable oils and alcohols remain relatively scarce. The second part also reviews the application of nanoparticles in biodiesel/vegetable oil/alcohol-based fuels holistically, emphasizing fuel properties and engine characteristics. The current review reveals that the overall characteristics of the low carbon fuel-diesel blends improve under the influence of nanoparticles during combustion in diesel engines. The most important aspect of nanoparticles is that they act as an oxygen buffer that provides additional oxygen molecules in the combustion chamber, promoting complete combustion and lowering unburnt emissions. Moreover, the nanoparticles used for these purposes exhibit excellent catalytic behaviour as a result of their high surface area-to-volume ratio-this leads to a reduction in exhaust pollutants and ensures an efficient and complete combustion. Beyond energy-based indicators, the exergy, economic, environmental, and sustainability aspects of the blends in diesel engines are discussed. It is observed that the performance of the diesel engine fuelled with low carbon fuels according to the second law of efficiency improves under the influence of the nano-additives. Our final part shows that despite the benefits of nanoparticles, humans and animals are under serious threats from the highly toxic nature of nanoparticles.

4.
Data Brief ; 29: 105237, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32071999

ABSTRACT

The present data article is centered on the research work which examines the effect of fuel preheating on DI diesel engine fuelled with Fish Oil Ethyl Ester (FOEE). Kirloskar TV1 model water cooled diesel engine with eddy current dynamometer was used in the experiment. Crude fish oil was converted into FOEE using transesterification process. The physical and chemical properties of FOEE were examined based on American Standards for Testing Materials (ASTM) biodiesel standards and data's were offered. To achieve better engine characteristics, a fuel preheater was designed and fabricated to work at different temperatures (60, 70 and 80 °C). Fuel preheating temperatures were achieved using three different shell and tube heat exchanger at various dimensions. Heat exchanger was designed to work with waste heat obtained from the engine exhaust. Engine tailpipe emission was recorded using AVL make 444 di-gas analyzer and smoke was measured using AVL make 437C free accelerometer smoke meter. Data related to fuel samples like neat diesel, FOEE blends with and without fuel preheating were presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...