Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7547, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985759

ABSTRACT

Since adult stem cells are responsible for replenishing tissues throughout life, it is vital to understand how failure to undergo apoptosis can dictate stem cell behavior both intrinsically and non-autonomously. Here, we report that depletion of pro-apoptotic Bax protein bestows hair follicle stem cells with the capacity to eliminate viable neighboring cells by sequestration of TNFα in their membrane. This in turn induces apoptosis in "loser" cells in a contact-dependent manner. Examining the underlying mechanism, we find that Bax loss-of-function competitive phenotype is mediated by the intrinsic activation of NFκB. Notably, winner stem cells differentially respond to TNFα, owing to their elevated expression of TNFR2. Finally, we report that in vivo depletion of Bax results in an increased stem cell pool, accelerating wound-repair and de novo hair follicle regeneration. Collectively, we establish a mechanism of mammalian cell competition, which can have broad therapeutic implications for tissue regeneration and tumorigenesis.


Subject(s)
Cell Competition , Tumor Necrosis Factor-alpha , Animals , bcl-2-Associated X Protein , Wound Healing/physiology , Hair Follicle , Stem Cells , Mammals
2.
Cell Death Differ ; 30(4): 979-991, 2023 04.
Article in English | MEDLINE | ID: mdl-36813919

ABSTRACT

Cell competition describes the process in which cells of greater fitness are capable of sensing and instructing elimination of lesser fit mutant cells. Since its discovery in Drosophila, cell competition has been established as a critical regulator of organismal development, homeostasis, and disease progression. It is therefore unsurprising that stem cells (SCs), which are central to these processes, harness cell competition to remove aberrant cells and preserve tissue integrity. Here, we describe pioneering studies of cell competition across a variety of cellular contexts and organisms, with the ultimate goal of better understanding competition in mammalian SCs. Furthermore, we explore the modes through which SC competition takes place and how this facilitates normal cellular function or contributes to pathological states. Finally, we discuss how understanding of this critical phenomenon will enable targeting of SC-driven processes, including regeneration and tumor progression.


Subject(s)
Cell Competition , Cell Physiological Phenomena , Animals , Cell Competition/genetics , Stem Cells , Drosophila , Mammals
3.
Nat Commun ; 13(1): 4628, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35941116

ABSTRACT

The presence of distinct stem cells that maintain the interfollicular epidermis is highly debated. Here, we report a population of keratinocytes, marked by Thy1, in the basal layer of the interfollicular epidermis. We find that epidermal cells expressing differential levels of Thy1 display distinct transcriptional signatures. Thy1+ keratinocytes do not express T cell markers, express a unique transcriptional profile, cycle significantly slower than basal epidermal progenitors and display significant expansion potential in vitro. Multicolor lineage tracing analyses and mathematical modeling reveal that Thy1+ basal keratinocytes do not compete neutrally alike interfollicular progenitors and contribute long-term to both epidermal replenishment and wound repair. Importantly, ablation of Thy1+ cells strongly impairs these processes, thus indicating the non-redundant function of Thy1+ stem cells in the epidermis. Collectively, these results reveal a distinct stem cell population that plays a critical role in epidermal homeostasis and repair.


Subject(s)
Epidermal Cells , Stem Cells , Animals , Cell Differentiation/physiology , Epidermis/metabolism , Keratinocytes/metabolism , Mice , Stem Cells/metabolism
4.
Nat Cell Biol ; 24(7): 1049-1063, 2022 07.
Article in English | MEDLINE | ID: mdl-35798842

ABSTRACT

Anchored cells of the basal epidermis constantly undergo proliferation in an overcrowded environment. An important regulator of epidermal proliferation is YAP, which can be controlled by both cell-matrix and cell-cell interactions. Here, we report that THY1, a GPI-anchored protein, inhibits epidermal YAP activity through converging molecular mechanisms. THY1 deficiency leads to increased adhesion by activating the integrin-ß1-SRC module. Notably, regardless of high cellular densities, the absence of THY1 leads to the dissociation of an adherens junction complex that enables the release and translocation of YAP. Due to increased YAP-dependent proliferation, Thy1-/- mice display enhanced wound repair and hair follicle regeneration. Taken together, our work reveals THY1 as a crucial regulator of cell-matrix and cell-cell interactions that controls YAP activity in skin homeostasis and regeneration.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Cycle Proteins , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Proliferation , Epidermis/metabolism , Homeostasis , Mice , Skin/metabolism
5.
Dev Cell ; 56(13): 1900-1916.e5, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34197726

ABSTRACT

Stem cells (SCs) play a key role in homeostasis and repair. While many studies have focused on SC self-renewal and differentiation, little is known regarding the molecular mechanism regulating SC elimination and compensation upon loss. Here, we report that Caspase-9 deletion in hair follicle SCs (HFSCs) attenuates the apoptotic cascade, resulting in significant temporal delays. Surprisingly, Casp9-deficient HFSCs accumulate high levels of cleaved caspase-3 and are improperly cleared due to an essential caspase-3/caspase-9 feedforward loop. These SCs are retained in an apoptotic-engaged state, serving as mitogenic signaling centers by continuously releasing Wnt3 and instructing proliferation. Investigating the underlying mechanism, we reveal a caspase-3/Dusp8/p38 module responsible for Wnt3 induction, which operates in both normal and Casp9-deleted HFSCs. Notably, Casp9-deleted mice display accelerated wound repair and de novo hair follicle regeneration. Taken together, we demonstrate that apoptotic cells represent a dynamic SC niche, from which emanating signals drive SC proliferation and tissue regeneration.


Subject(s)
Caspase 3/genetics , Caspase 9/genetics , Dual-Specificity Phosphatases/genetics , Regeneration/genetics , Wnt3 Protein/genetics , Animals , Apoptosis/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , Cell Self Renewal/genetics , Hair Follicle/growth & development , Hair Follicle/metabolism , MAP Kinase Signaling System/genetics , Mice , Stem Cell Niche/genetics , Stem Cells/metabolism , Wound Healing/genetics
6.
Nat Neurosci ; 24(7): 941-953, 2021 07.
Article in English | MEDLINE | ID: mdl-34017130

ABSTRACT

Common genetic risk for neuropsychiatric disorders is enriched in regulatory elements active during cortical neurogenesis. However, it remains poorly understood as to how these variants influence gene regulation. To model the functional impact of common genetic variation on the noncoding genome during human cortical development, we performed the assay for transposase accessible chromatin using sequencing (ATAC-seq) and analyzed chromatin accessibility quantitative trait loci (QTL) in cultured human neural progenitor cells and their differentiated neuronal progeny from 87 donors. We identified significant genetic effects on 988/1,839 neuron/progenitor regulatory elements, with highly cell-type and temporally specific effects. A subset (roughly 30%) of chromatin accessibility-QTL were also associated with changes in gene expression. Motif-disrupting alleles of transcriptional activators generally led to decreases in chromatin accessibility, whereas motif-disrupting alleles of repressors led to increases in chromatin accessibility. By integrating cell-type-specific chromatin accessibility-QTL and brain-relevant genome-wide association data, we were able to fine-map and identify regulatory mechanisms underlying noncoding neuropsychiatric disorder risk loci.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Genetic Variation/genetics , Mental Disorders/genetics , Neurons/physiology , Quantitative Trait Loci/genetics , Cell Differentiation/physiology , Chromatin/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Neural Stem Cells/physiology , Neurogenesis/genetics , Regulatory Elements, Transcriptional/genetics , Transcription Factors/genetics
7.
Proc IEEE Int Symp Biomed Imaging ; 2018: 658-662, 2018 Apr.
Article in English | MEDLINE | ID: mdl-32038768

ABSTRACT

New tissue-clearing techniques and improvements in optical microscopy have rapidly advanced capabilities to acquire volumetric imagery of neural tissue at resolutions of one micron or better. As sizes for data collections increase, accurate automatic segmentation of cell nuclei becomes increasingly important for quantitative analysis of imaged tissue. We present a cell nucleus segmentation method that is formulated as a parameter estimation problem with the goal of determining the count, shapes, and locations of nuclei that most accurately describe an image. We applied our new voting-based approach to fluorescence confocal microscopy images of neural tissue stained with DAPI, which highlights nuclei. Compared to manual counting of cells in three DAPI images, our method outperformed three existing approaches. On a manually labeled high-resolution DAPI image, our method also outperformed those methods and achieved a cell count accuracy of 98.99% and mean Dice coefficient of 0.6498.

8.
Exp Neurol ; 260: 33-43, 2014 Oct.
Article in English | MEDLINE | ID: mdl-23036599

ABSTRACT

Human neurons, generated from reprogrammed somatic cells isolated from live patients, bring a new perspective on the understanding of Autism Spectrum Disorders (ASD). The new technology can nicely complement other models for basic research and the development of therapeutic compounds aiming to revert or ameliorate the condition. Here, we discuss recent advances on the use of stem cells and other models to study ASDs, as well as their limitations, implications and future perspectives.


Subject(s)
Child Development Disorders, Pervasive/therapy , Neurons/cytology , Rett Syndrome/therapy , Stem Cells/cytology , Animals , Cell- and Tissue-Based Therapy/methods , Child Development Disorders, Pervasive/genetics , Disease Models, Animal , Humans , Neurons/physiology , Rett Syndrome/genetics
9.
Anesthesiology ; 116(3): 586-602, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22354242

ABSTRACT

BACKGROUND: Anesthesia given to immature rodents causes cognitive decline, raising the possibility that the same might be true for millions of children undergoing surgical procedures under general anesthesia each year. We tested the hypothesis that anesthesia-induced cognitive decline in rats is treatable. We also tested if anesthesia-induced cognitive decline is aggravated by tissue injury. METHODS: Seven-day old rats underwent sevoflurane anesthesia (1 minimum alveolar concentration, 4 h) with or without tail clamping. At 4 weeks, rats were randomized to environmental enrichment or normal housing. At 8 weeks rats underwent neurocognitive testing, which consisted of fear conditioning, spatial reference memory, and water maze-based memory consolidation tests, and interrogated working memory, short-term memory, and early long-term memory. RESULTS: Sevoflurane-treated rats had a greater escape latency when the delay between memory acquisition and memory retrieval was increased from 1 min to 1 h, indicating that short-term memory was impaired. Delayed environmental enrichment reversed the effects of sevoflurane on short-term memory and generally improved many tested aspects of cognitive function, both in sevoflurane-treated and control animals. The performance of tail-clamped rats did not differ from those rats receiving anesthesia alone. CONCLUSION: Sevoflurane-induced cognitive decline in rats is treatable. Delayed environmental enrichment rescued the sevoflurane-induced impairment in short-term memory. Tissue injury did not worsen the anesthesia-induced memory impairment. These findings may have relevance to neonatal and pediatric anesthesia.


Subject(s)
Housing, Animal , Memory Disorders/chemically induced , Memory Disorders/therapy , Methyl Ethers/toxicity , Age Factors , Animals , Animals, Newborn , Male , Maze Learning/drug effects , Maze Learning/physiology , Memory Disorders/physiopathology , Random Allocation , Rats , Rats, Sprague-Dawley , Sevoflurane , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...