Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 38(33): 10114-10127, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35952658

ABSTRACT

Quartz crystal microbalance with dissipation (QCM-D) conveniently monitors mass and mechanical property changes of thin films on solid substrates with exquisite resolution. QCM-D is frequently used to measure dissolved solute/sol adsorption isotherms and kinetics. Unfortunately, currently available methodologies to interpret QCM-D data treat the adlayer as a homogeneous medium, which does not adequately describe solution-adsorption physics. Tethering of the adsorbate to the solid surface is not explicitly recognized, and the liquid solvent is included in the adsorbate mass, which is especially in error for low coverages. Consequently, the areal mass of adsorbate (i.e., solute adsorption) is overestimated. Further, friction is not considered between the bound adsorbate and the free solvent flowing in the adlayer. To overcome these deficiencies, we develop a two-phase (2P) continuum model that self-consistently determines adsorbate and liquid-solvent contributions and includes friction between the attached adsorbate and flowing liquid solvent. We then compare the proposed 2P model to those of Sauerbrey for a rigid adlayer and Voinova et al. for a viscoelastic-liquid adlayer. Effects of 2P-adlayer properties are examined on QCM-D-measured frequency and dissipation shifts, including adsorbate volume fraction and elasticity, adlayer thickness, and overtone number, thereby guiding data interpretation. We demonstrate that distinguishing between adsorbate adsorption and homogeneous-film adsorption is critical; failing to do so leads to incorrect adlayer mass and physical properties.

2.
Langmuir ; 38(21): 6523-6530, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35580860

ABSTRACT

We investigate the formation and properties of crude oil/water interfacial films. The time evolution of interfacial tension suggests the presence of short and long timescale processes reflecting the competition between different populations of surface-active molecules. We measure both the time-dependent shear and extensional interfacial rheology moduli. Late-time interface rheology is dominated by elasticity, which results in visible wrinkles on the crude oil drop surface upon interface disturbance. We also find that the chemical composition of the interfacial films is affected by the composition of the aqueous phase that it has contacted. For example, sulfate ions promote films enriched with carboxylic groups and condensed aromatics. Finally, we perform solution exchange experiments and monitor the late-time film composition upon the exchange. We detect the film composition change upon replacing chloride solutions with sulfate-enriched ones. To the best of our knowledge, we are the first to report the composition alteration of aged crude oil films. This finding might foreshadow an essential crude oil recovery mechanism.

3.
Langmuir ; 35(2): 428-434, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30540194

ABSTRACT

Asphaltenes in crude oil play a pivotal role in reservoir oil production because they control rock-surface wettability. Upon crude oil invasion into a brine-filled reservoir trap, rock adherence of sticky asphaltene agglomerates formed at the crude oil/brine interface can change the initially water-wet porous medium into mixed-oil wetting. If thick, stable water films coat the rock surfaces, however, asphaltenic-oil adhesion is thought to be prevented. We investigate whether water films influence the uptake of asphaltenes in crude oil onto silica surfaces. Water films of known thickness are formed at a silica surface in a quartz crystal microbalance with dissipation and contacted by toluene-solubilized asphaltene. We confirm that thick water films prevent asphaltene molecular contact with the silica surface blocking asphaltene adhesion. The thicker the water film, the smaller is the amount of asphaltene deposited. Film thickness necessary for complete blockage onto silica is greater than about 500 nm, well beyond the range of molecular-chain contact. Water films of thickness less than 500 nm, sandwiched between toluene and solid silica, apparently rupture into thick water pockets and interposed molecularly thin water layers that permit asphaltene adherence.

4.
Chem Commun (Camb) ; 48(4): 513-5, 2012 Jan 14.
Article in English | MEDLINE | ID: mdl-22127026

ABSTRACT

Single-crystal X-ray diffraction study reveals the host-guest interactions between a homochiral metal-organic framework and two enantiomers of a chiral alcohol providing the key driving force for the enantioselective sorption of alcohols in the framework.

5.
Chemistry ; 16(34): 10348-56, 2010 Sep 10.
Article in English | MEDLINE | ID: mdl-20730747

ABSTRACT

Two new, homochiral, porous metal-organic coordination polymers [Zn(2)(ndc){(R)-man}(dmf)]⋅3DMF and [Zn(2)(bpdc){(R)-man}(dmf)]⋅2DMF (ndc=2,6-naphthalenedicarboxylate; bpdc=4,4'-biphenyldicarboxylate; man=mandelate; dmf=N,N'-dimethylformamide) have been synthesized by heating Zn(II) nitrate, H(2)ndc or H(2)bpdc and chiral (R)-mandelic acid (H(2)man) in DMF. The colorless crystals were obtained and their structures were established by single-crystal X-ray diffraction. These isoreticular structures share the same topological features as the previously reported zinc(II) terephthalate lactate [Zn(2)(bdc){(S)-lac}(dmf)]⋅DMF framework, but have larger pores and opposite absolute configuration of the chiral centers. The enhanced pores size results in differing stereoselective sorption properties: the new metal-organic frameworks effectively and stereoselectively (ee up to 62 %) accommodate bulkier guest molecules (alkyl aryl sulfoxides) than the parent [Zn(2)(bdc){(S)-lac}(dmf)]⋅DMF, while the latter demonstrates decent enantioselectivity toward precursor of chiral anticancer drug sulforaphane, CH(3)SO(CH(2))(4)OH. The new homochiral porous metal-organic coordination polymers are capable of catalyzing a highly selective oxidation of bulkier sulfides (2-NaphSMe (2-C(10)H(7)SMe) and PhSCH(2)Ph) that could not be achieved by the smaller-pore [Zn(2)(bdc){(S)-lac}(dmf)]⋅DMF. The sorption of different guest molecules (both R and S isomers) into the chiral pores of [Zn(2)(bdc){(S)-lac}(dmf)]⋅DMF was modeled by using ab initio calculations that provided a qualitative explanation for the observed sorption enantioselectivity. The high stereo-preference is accounted for by the presence of coordinated inner-pore DMF molecule that forms a weak C-H...O bond between the DMF methyl group and the (S)-PhSOCH(3) sulfinyl group.


Subject(s)
Dimethylformamide/chemistry , Organometallic Compounds/chemistry , Polymers/chemistry , Zinc/chemistry , Hydrogen Bonding , Models, Molecular , Molecular Structure , Quantum Theory , Stereoisomerism , X-Ray Diffraction
6.
Inorg Chem ; 46(17): 6843-5, 2007 Aug 20.
Article in English | MEDLINE | ID: mdl-17645331

ABSTRACT

Chiral-layered building motifs of zinc(II) camphorate are linked through linear N-donor ligands, forming series of three-dimensional isoreticular porous homochiral frameworks. The lengths of these linear ligands control the pore sizes and free accessible volumes of the homochiral metal-organic structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...