Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Elife ; 122023 01 19.
Article in English | MEDLINE | ID: mdl-36656757

ABSTRACT

Protein feeding is critical for male reproductive success in many insect species. However, how protein affects the reproduction remains largely unknown. Using Bactrocera dorsalis as the study model, we investigated how protein feeding regulated sex pheromone synthesis. We show that protein ingestion is essential for sex pheromone synthesis in male. While protein feeding or deprivation did not affect Bacillus abundance, transcriptome analysis revealed that sarcosine dehydrogenase (Sardh) in protein-fed males regulates the biosynthesis of sex pheromones by increasing glycine and threonine (sex pheromone precursors) contents. RNAi-mediated loss-of-function of Sardh decreases glycine, threonine, and sex pheromone contents and results in decreased mating ability in males. The study links male feeding behavior with discrete patterns of gene expression that plays role in sex pheromone synthesis, which in turn translates to successful copulatory behavior of the males.


Subject(s)
Sex Attractants , Tephritidae , Animals , Male , Insecta/genetics , Tephritidae/genetics , Gene Expression Profiling , RNA Interference
2.
Front Microbiol ; 12: 656406, 2021.
Article in English | MEDLINE | ID: mdl-34040592

ABSTRACT

There is growing evidence that symbiotic microbes can influence multiple nutrition-related behaviors of their hosts, including locomotion, feeding, and foraging. However, how the microbiome affects nutrition-related behavior is largely unknown. Here, we demonstrate clear sexual dimorphism in how the microbiome affects foraging behavior of a frugivorous fruit fly, Drosophila suzukii. Female flies deprived of their microbiome (axenic) were consistently less active in foraging on fruits than their conventional counterparts, even though they were more susceptible to starvation and starvation-induced locomotion was notably more elevated in axenic than conventional females. Such behavioral change was not observed in male flies. The lag of axenic female flies but not male flies to forage on fruits is associated with lower oviposition by axenic flies, and mirrored by reduced food seeking observed in virgin females when compared to mated, gravid females. In contrast to foraging intensity being highly dependent on the microbiome, conventional and axenic flies of both sexes showed relatively consistent and similar fruit preferences in foraging and oviposition, with raspberries being preferred among the fruits tested. Collectively, this work highlights a clear sex-specific effect of the microbiome on foraging and locomotion behaviors in flies, an important first step toward identifying specific mechanisms that may drive the modulation of insect behavior by interactions between the host, the microbiome, and food.

3.
Environ Microbiol ; 23(9): 5014-5029, 2021 09.
Article in English | MEDLINE | ID: mdl-33587780

ABSTRACT

Domestication disconnects an animal from its natural environment and diet, imposing changes in the attendant microbial community. We examine these changes in Philornis downsi (Muscidae), an invasive parasitic fly of land birds in the Galapagos Islands. Using a 16S rDNA profiling approach we studied the microbiome of larvae and adults of wild and laboratory-reared populations. These populations diverged in their microbiomes, significantly more so in larval than in adult flies. In field-collected second-instar larvae, Klebsiella (70.3%) was the most abundant taxon, while in the laboratory Ignatzschineria and Providencia made up 89.2% of the community. In adults, Gilliamella and Dysgonomonas were key members of the core microbiome of field-derived females and males but had no or very low representation in the laboratory. Adult flies harbour sex-specific microbial consortia in their gut, as male core microbiomes were significantly dominated by Klebsiella. Thus, P. downsi microbiomes are dynamic and shift correspondingly with life cycle and diet. Sex-specific foraging behaviour of adult flies and nest conditions, which are absent in the laboratory, may contribute to shaping distinct larval, and adult male and female microbiomes. We discuss these findings in the context of microbe-host co-evolution and the implications for control measures.


Subject(s)
Microbiota , Muscidae , Parasites , Animals , Birds , Diet , Ecuador , Female , Male
4.
Insect Sci ; 28(5): 1491-1503, 2021 Oct.
Article in English | MEDLINE | ID: mdl-32965085

ABSTRACT

In Sterile Insect Technique (SIT) programs, massive numbers of insects are reared, sterilized, and released in the field to impede reproduction of pest populations. The domestication and rearing processes used to produce insects for SIT programs may have significant evolutionary impacts on life history and reproductive biology. We assessed the effects of domestication on sexual performance of laboratory reared Queensland fruit fly, Bactrocera tryoni, by comparing an old (49 generations) and a young colony (5 generations). We evaluated mating propensity, mating latency, copula duration, sperm transfer, and ability to induce sexual inhibition in mates. Overall, both males and females from the old colony had greater mating propensity than those from the young colony. Copula duration was longer when females were from the old colony. There was no evidence of sexual isolation between the colonies as males and females from the two colonies had similar propensity to mate with flies from either colony. Males from the old colony transferred more sperm regardless of which colony their mate was from. Finally, males from both colonies were similarly able to induce sexual inhibition in their mates and were also similarly able to secure copulations with already-mated females. Positive effects of domestication on sperm transfer, coupled with maintained ability to induce sexual inhibition in mates and to secure copulations with previously mated females, highlights that domestication may have little effect, or even positive effects, on some aspects of sexual performance that may advantage mass-reared B. tryoni in SIT programs.


Subject(s)
Domestication , Sexual Behavior, Animal , Tephritidae , Animals , Copulation , Female , Male , Reproduction
6.
Insects ; 10(12)2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31795249

ABSTRACT

Philornis downsi Dodge and Aitken (Diptera: Muscidae) is an avian parasitic fly that has invaded the Galapagos archipelago and exerts an onerous burden on populations of endemic land birds. As part of an ongoing effort to develop tools for the integrated management of this fly, our objective was to determine its long- and short-range responses to bacterial and fungal cues associated with adult P. downsi. We hypothesized that the bacterial and fungal communities would elicit attraction at distance through volatiles, and appetitive responses upon contact. Accordingly, we amplified bacteria from guts of adult field-caught flies and from bird feces, and yeasts from fermenting papaya juice (a known attractant of P. downsi), on selective growth media, and assayed the response of flies to these microbes or their exudates. In the field, we baited traps with bacteria or yeast and monitored adult fly attraction. In the laboratory, we used the proboscis extension response (PER) to determine the sensitivity of males and females to tarsal contact with bacteria or yeast. Long range trapping efforts yielded two female flies over 112 trap-nights (attracted by bacteria from bird feces and from the gut of adult flies). In the laboratory, tarsal contact with stimuli from gut bacteria elicited significantly more responses than did yeast stimuli. We discuss the significance of these findings in context with other studies in the field and identify targets for future work.

7.
BMC Biotechnol ; 19(Suppl 2): 92, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31847844

ABSTRACT

BACKGROUND: The Mediterranean fruit fly Ceratitis capitata is a major pest in horticulture. The development of fly larvae is mediated by bacterial decay in the fruit tissue. Despite the importance of bacteria on larval development, very little is known about the interaction between bacteria and larvae in their true ecological context. Understanding their relationship and inter-dependence in the host fruit is important for the development of new pest control interfaces to deal with this pest. RESULTS: We find no negative effects on egg hatch or larval development brought about by the bacterial isolates tested. The various symbionts inhabiting the fly's digestive system differ in their degree of contribution to the development of fly larvae depending on the given host and their sensitivity to induced inhibition caused by female produced antimicrobial peptides. These differences were observed not only at the genus or species level but also between isolates of the same species. We demonstrate how the microbiota from the mother's gut supports the development of larvae in the fruit host and show that larvae play a major role in spreading the bacterial contagion in the infected fruit itself. In addition, we present (for the first time) evidence for horizontal transfer of bacteria between larvae of different maternal origin that develop together in the same fruit. CONCLUSIONS: Larvae play a major role in the spread and shaping of the microbial population in the fruit. The transfer of bacteria between different individuals developing in the same fruit suggests that the infested fruit serves as a microbial hub for the amplification and spread of bacterial strains between individuals.


Subject(s)
Bacteria/growth & development , Ceratitis capitata/growth & development , Prunus persica/parasitology , Animals , Antimicrobial Cationic Peptides/metabolism , Antimicrobial Cationic Peptides/pharmacology , Bacteria/drug effects , Bacteria/isolation & purification , Ceratitis capitata/metabolism , Ceratitis capitata/microbiology , Digestive System/microbiology , Female , Larva/growth & development , Larva/microbiology , Symbiosis
8.
J Insect Physiol ; 117: 103917, 2019.
Article in English | MEDLINE | ID: mdl-31381903

ABSTRACT

Microbial associations are widespread across the insects. In the olive fruit fly Bactrocera oleae (Diptera: Tephritidae), vertically transmitted gut symbionts contribute to larval development inside the olive host, and to adult nutrition. Nevertheless, their effect on behavioural decisions of adults is unknown. In this study, we show that symbiotic bacteria affect oviposition behaviour in B. oleae. We studied the effect of different fruits as hosts and different gut-bacteria as gut-symbionts on oviposition attempts and fly development in B. oleae. Untreated flies that had native gut-symbionts attempted oviposition significantly more times than axenic flies as well as flies treated with medfly-associated Pantoea or Klebsiella bacteria. Axenic flies provided with a diet containing the homogenized gut of symbiotic flies recovered the same number of oviposition attempts as their symbiotic counterparts. As for as the different hosts, green olives (unripe) and grapes were preferred while black olives (ripe) elicited the least number of oviposition attempts, with an interactive effect of host and bacterial treatments. It appears that both the host attributes and the native gut-symbionts drive oviposition preference towards green olives in B. oleae. Moreover, both bacterial treatments and hosts significantly affected the development of B. oleae larvae. Though grapes elicited as many oviposition attempts as green olives, they yielded no pupae. Taken together, our results suggest that the intimate association between B. oleae and their gut-microbes, extends beyond nutritional support to behaviour.


Subject(s)
Oviposition , Tephritidae/microbiology , Tephritidae/physiology , Animals , Female , Male , Metamorphosis, Biological , Microbiota , Symbiosis
9.
PLoS One ; 14(1): e0210109, 2019.
Article in English | MEDLINE | ID: mdl-30650116

ABSTRACT

The gut microbiome of insects directly or indirectly affects the metabolism, immune status, sensory perception and feeding behavior of its host. Here, we examine the hypothesis that in the oriental fruit fly (Bactrocera dorsalis, Diptera: Tephritidae), the presence or absence of gut symbionts affects foraging behavior and nutrient ingestion. We offered protein-starved flies, symbiotic or aposymbiotic, a choice between diets containing all amino acids or only the non-essential ones. The different diets were presented in a foraging arena as drops that varied in their size and density, creating an imbalanced foraging environment. Suppressing the microbiome resulted in significant changes of the foraging behavior of both male and female flies. Aposymbiotic flies responded faster to the diets offered in experimental arenas, spent more time feeding, ingested more drops of food, and were constrained to feed on time-consuming patches (containing small drops of food), when these offered the full complement of amino acids. We discuss these results in the context of previous studies on the effect of the gut microbiome on host behavior, and suggest that these be extended to the life history dimension.


Subject(s)
Behavior, Animal/physiology , Feeding Behavior/physiology , Gastrointestinal Microbiome/physiology , Tephritidae/physiology , Animals , Female , Larva/physiology , Male , Pupa/physiology , Symbiosis/physiology , Tephritidae/microbiology
10.
Curr Biol ; 27(15): R746-R747, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28787601

ABSTRACT

Bacteria resident in the gut of Drosophila modify the fly's innate chemosensory responses to nutritional stimuli. In effect, the gut microbiome compels the host to forage on food patches that favour particular assemblages of bacteria.


Subject(s)
Gastrointestinal Microbiome , Animals , Bacteria , Drosophila/microbiology , Smell , Symbiosis
11.
Mol Ecol ; 26(18): 4644-4656, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28664982

ABSTRACT

The composition and diversity of bacteria forming the microbiome of parasitic organisms have implications for differential host pathogenicity and host-parasite co-evolutionary interactions. The microbiome of pathogens can therefore have consequences that are relevant for managing disease prevalence and impact on affected hosts. Here, we investigate the microbiome of an invasive parasitic fly Philornis downsi, recently introduced to the Galápagos Islands, where it poses extinction threat to Darwin's finches and other land birds. Larvae infest nests of Darwin's finches and consume blood and tissue of developing nestlings, and have severe mortality impacts. Using 16s rRNA sequencing data, we characterize the bacterial microbiota associated with P. downsi adults and larvae sourced from four finch host species, inhabiting two islands and representing two ecologically distinct groups. We show that larval and adult microbiomes are dominated by the phyla Proteobacteria and Firmicutes, which significantly differ between life stages in their distributions. Additionally, bacterial community structure significantly differed between larvae retrieved from strictly insectivorous warbler finches (Certhidea olivacea) and those parasitizing hosts with broader dietary preferences (ground and tree finches, Geospiza and Camarhynchus spp., respectively). Finally, we found no spatial effects on the larval microbiome, as larvae feeding on the same host (ground finches) harboured similar microbiomes across islands. Our results suggest that the microbiome of P. downsi changes during its development, according to dietary composition or nutritional needs, and is significantly affected by host-related factors during the larval stage. Unravelling the ecological significance of bacteria for this parasite will contribute to the development of novel, effective control strategies.


Subject(s)
Finches/parasitology , Microbiota , Muscidae/microbiology , Animals , Ecuador , Introduced Species , Islands , Larva/microbiology , Parasites/microbiology , RNA, Ribosomal, 16S/genetics
12.
Sci Rep ; 7: 42633, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28225009

ABSTRACT

The olive fruit fly, Bactrocera oleae, is the most destructive pest of olive orchards worldwide. The monophagous larva has the unique capability of feeding on olive mesocarp, coping with high levels of phenolic compounds and utilizing non-hydrolyzed proteins present, particularly in the unripe, green olives. On the molecular level, the interaction between B. oleae and olives has not been investigated as yet. Nevertheless, it has been associated with the gut obligate symbiotic bacterium Candidatus Erwinia dacicola. Here, we used a B.oleae microarray to analyze the gene expression of larvae during their development in artificial diet, unripe (green) and ripe (black) olives. The expression profiles of Ca. E. dacicola were analyzed in parallel, using the Illumina platform. Several genes were found overexpressed in the olive fly larvae when feeding in green olives. Among these, a number of genes encoding detoxification and digestive enzymes, indicating a potential association with the ability of B. oleae to cope with green olives. In addition, a number of biological processes seem to be activated in Ca. E. dacicola during the development of larvae in olives, with the most notable being the activation of amino-acid metabolism.


Subject(s)
Erwinia/genetics , Fruit/parasitology , Herbivory , Olea/parasitology , Symbiosis , Tephritidae/genetics , Tephritidae/microbiology , Transcriptome , Animals , Gene Expression Profiling , Gene Expression Regulation , Gene Expression Regulation, Bacterial , Larva , Reproducibility of Results
13.
R Soc Open Sci ; 2(7): 150170, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26587275

ABSTRACT

Ripe fruit offer readily available nutrients for many animals, including fruit fly larvae (Diptera: Tephritidae) and their associated rot-inducing bacteria. Yet, during most of their ontogeny, fruit remain chemically defended and effectively suppress herbivores and pathogens by high levels of secondary metabolites. Olive flies (Bactrocera oleae) are uniquely able to develop in unripe olives. Unlike other frugivorous tephritids, the larvae maintain bacteria confined within their midgut caeca. We examined the interaction between larvae, their associated bacteria, and fruit chemical defence, hypothesizing that bacterial contribution to larval development is contingent on the phenology of fruit defensive chemistry. We demonstrate that larvae require their natural complement of bacteria (Candidatus Erwinia dacicola: Enterobacteriaceae) in order to develop in unripe olives. Conversely, when feeding on ripe fruit, larval development proceeds independently of these bacteria. Our experiments suggest that bacteria counteract the inhibitory effect of oleuropein-the principal phenolic glycoside in unripe olives. In light of these results, we suggest that the unique symbiosis in olive flies, compared with other frugivorous tephritids, is understood by considering the relationship between the fly, bacteria and fruit chemistry. When applied in an evolutionary context, this approach may also point out the forces which shaped symbioses across the Tephritidae.

14.
BMC Genet ; 15 Suppl 2: S10, 2014.
Article in English | MEDLINE | ID: mdl-25470981

ABSTRACT

BACKGROUND: In the Mediterranean fruit fly (medfly), Ceratitis capitata, a highly invasive agricultural pest species, polyandry, associated with sperm precedence, is a recurrent behaviour in the wild. The absence of tools for the unambiguous discrimination between competing sperm from different males in the complex female reproductive tract has strongly limited the understanding of mechanisms controlling sperm dynamics and use. RESULTS: Here we use transgenic medfly lines expressing green or red fluorescent proteins in the spermatozoa, which can be easily observed and unambiguously differentiated within the female fertilization chamber. In twice-mated females, one day after the second mating, sperm from the first male appeared to be homogenously distributed all over the distal portion of each alveolus within the fertilization chamber, whereas sperm from the second male were clearly concentrated in the central portion of each alveolus. This distinct stratified sperm distribution was not maintained over time, as green and red sperm appeared homogeneously mixed seven days after the second mating. This dynamic sperm storage pattern is mirrored by the paternal contribution in the progeny of twice-mated females. CONCLUSIONS: Polyandrous medfly females, unlike Drosophila, conserve sperm from two different mates to fertilize their eggs. From an evolutionary point of view, the storage of sperm in a stratified pattern by medfly females may initially favour the fresher ejaculate from the second male. However, as the second male's sperm gradually becomes depleted, the sperm from the first male becomes increasingly available for fertilization. The accumulation of sperm from different males will increase the overall genetic variability of the offspring and will ultimately affect the effective population size. From an applicative point of view, the dynamics of sperm storage and their temporal use by a polyandrous female may have an impact on the Sterile Insect Technique (SIT). Indeed, even if the female's last mate is sterile, an increasing proportion of sperm from a previous mating with a fertile male may contribute to sire viable progeny.


Subject(s)
Ceratitis capitata/genetics , Sexual Behavior, Animal , Spermatozoa , Animals , Animals, Genetically Modified , Female , Fertilization , Male , Reproduction
15.
Appl Environ Microbiol ; 79(1): 303-13, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23104413

ABSTRACT

The Mediterranean fruit fly (medfly) (Ceratitis capitata) lays eggs in fruits, where larvae subsequently develop, causing large-scale agricultural damage. Within its digestive tract, the fly supports an extended bacterial community that is composed of multiple strains of a variety of enterobacterial species. Most of these bacteria appear to be functionally redundant, with most strains sustaining diazotrophy and/or pectinolysis. At least some of these bacteria were shown to be vertically inherited, but colonization, structural, and metabolic aspects of the community's dynamics have not been investigated. We used fluorescent in situ hybridization, metabolic profiling, plate cultures, and pyrosequencing to show that an initial, egg-borne, diverse community expands throughout the fly's life cycle. While keeping "core" diazotrophic and pectinolytic functions, it also harbors diverse and fluctuating populations that express varied metabolic capabilities. We suggest that the metabolic and compositional plasticity of the fly's microbiota provides potential adaptive advantages to the medfly host and that its acquisition and dynamics are affected by mixed processes that include stochastic effects, host behavior, and molecular barriers.


Subject(s)
Bacteria/classification , Bacteria/metabolism , Biota , Ceratitis capitata/microbiology , Animals , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Gastrointestinal Tract/microbiology , Nitrogen Fixation , Pectins/metabolism , Population Dynamics , RNA, Ribosomal, 16S/genetics
16.
Proc Biol Sci ; 277(1687): 1545-52, 2010 May 22.
Article in English | MEDLINE | ID: mdl-20071385

ABSTRACT

Olive flies (Bactrocera oleae) are intimately associated with bacteria throughout their life cycle, and both larvae and adults are morphologically adapted for housing bacteria in the digestive tract. We tested the hypothesis that these bacteria contribute to the adult fly's fitness in a diet-dependent fashion. We predicted that when dietary protein is superabundant, bacterial contribution will be minimal. Conversely, in the absence of protein, or when only non-essential amino acids are present (as in the fly's natural diet), we predicted that bacterial contribution to fitness will be significant. Accordingly, we manipulated diet and the presence of bacteria in female olive flies, and monitored fecundity--an indirect measure of fitness. Bacteria did not affect fecundity when females were fed a nutritionally poor diet of sucrose, or a protein-rich, nutritionally complete diet. However, when females were fed a diet containing non-essential amino acids as the sole source of amino nitrogen, egg production was significantly enhanced in the presence of bacteria. These results suggest that bacteria were able to compensate for the skewed amino acid composition of the diet and may be indispensable for wild adult olive flies that subsist mainly on nitrogen-poor resources such as honeydew.


Subject(s)
Bacteria/metabolism , Diet , Gastrointestinal Tract/microbiology , Olea/parasitology , Symbiosis , Tephritidae/physiology , Amino Acids/metabolism , Animals , Bacteria/growth & development , Colony Count, Microbial , Female , Gastrointestinal Tract/metabolism , Larva , Male , Oviposition , Ovum/metabolism , Tephritidae/microbiology
17.
ISME J ; 4(1): 28-37, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19617877

ABSTRACT

The sterile insect technique (SIT) is a method of biological control whereby millions of factory reared sterile male insects are released into the field. This technique is commonly used to combat the Mediterranean fruit fly (Ceratitis capitata, Diptera: Tephritidae). Sterile medfly males are less competent in attracting and mating with wild females, a property commonly linked to the irradiation process responsible for the sterilization. As bacteria are important partners in the fly's life cycle, we used molecular analytical methods to study the community structure of the gut microbiota in irradiated male medflies. We find that the sterilizing irradiation procedure affects the gut bacterial community structure of the Mediterranean fruit fly. Although the Enterobacteriaceae family remains the dominant bacterial group present in the gut, the levels of Klebsiella species decreases significantly in the days after sterilization. In addition, we detected substantial differences in some bacterial species between the mass rearing strain Vienna 8 and the wild strain. Most notable among these are the increased levels of the potentially pathogenic species Pseudomonas in the industrial strain. Testing the hypothesis that regenerating the original microbiota community could result in enhanced competitiveness of the sterile flies, we found that the addition of the bacterial species Klebsiella oxytoca to the postirradiation diet enables colonization of these bacteria in the gut while resulting in decreased levels of the Pseudomonas sp. Feeding on diets containing bacteria significantly improved sterile male performance in copulatory tests. Further studies will determine the feasibility of bacterial amelioration in SIT operations.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Ceratitis capitata/microbiology , Ceratitis capitata/physiology , Gastrointestinal Tract/microbiology , Pest Control, Biological/methods , Reproduction , Animals , Biodiversity , Ceratitis capitata/radiation effects , Colony Count, Microbial , DNA Fingerprinting/methods , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Electrophoresis, Polyacrylamide Gel/methods , Gastrointestinal Tract/radiation effects , Klebsiella oxytoca/growth & development , Male , Nucleic Acid Denaturation , Polymerase Chain Reaction/methods , Pseudomonas/growth & development , RNA, Ribosomal, 16S/genetics
18.
J Insect Physiol ; 55(7): 637-42, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19482138

ABSTRACT

We determined the temporal pattern of female remating in the Mediterranean fruit fly, Ceratitis capitata, and how mating with sterile males affects remating. In addition, we examined the hypotheses that sterile male nutrition and age affect the subsequent receptivity of their mates. Temporally, female receptivity varied significantly throughout the experimental period. Relatively high levels of remating (14%) on the days following the first copulation were followed by a decline, with a significantly low point (4.1%) 2 weeks after mating. Subsequently, receptivity is gradually restored (18%) 3 and 4 weeks after the initial copulation. When females were first mated to sterile males, significantly higher remating percentages were recorded. The ability of sterile males to inhibit receptivity of both wild and laboratory reared females on the day of first mating was significantly improved when they were fed a nutrient rich diet. Male age at first mating also affected female receptivity: sterile males of intermediate age (11 days old) inhibited female remating significantly more than younger or older flies. Although further studies are needed to determine the relative roles of natural and sexual selection in modulating patterns of female sexual receptivity, the Sterile Insect Technique may be improved by releasing well nourished, older sterile males.


Subject(s)
Ceratitis capitata/physiology , Animals , Ceratitis capitata/growth & development , Female , Male , Mating Preference, Animal , Sexual Behavior, Animal
19.
J Econ Entomol ; 99(4): 1420-9, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16937701

ABSTRACT

In many insect species, females can mate more than once and store sperm from more than one male. An assessment and understanding of polyandry in the field can be important for pest species with a high colonization potential, such as the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), which is also highly polyphagous and among the most destructive agricultural insects. The use of polymorphic microsatellite markers, combined with different statistical approaches, provides evidence that polyandry occurs in two C. capitata natural populations, one population from the Greek island of Chios and one population from Rehovot, in Israel. The observed different level of polyandry is discussed in relation to the genetic diversity, seasonality, and demography of the two populations. When polyandry is present, paternity analysis also indicates that one male, presumably the last, tends to sire most of the progeny. Polyandry and paternity skew may have important implications for the evolution of the species, in terms of maintenance of the genetic variability. Moreover, these aspects of the mating behavior, i.e., remating frequency and paternity skew, may locally affect the sterile insect technique, the most commonly applied control strategy against C. capitata.


Subject(s)
Ceratitis capitata/physiology , Sexual Behavior, Animal/physiology , Animals , Female , Male , Spermatozoa/physiology
20.
Annu Rev Entomol ; 51: 413-40, 2006.
Article in English | MEDLINE | ID: mdl-16332218

ABSTRACT

The mating system of each species is a unique, dynamic suite of interactions between the sexes. In this review I describe these interactions in the families of flies that contain blood-feeding species. A transition from the aerial swarm, with rapid copulae and no direct female choice, to substrate-based systems with lengthy copulae and opportunities for female choice is evident at both a phylogenetic scale and within nematoceran families under specific ecological conditions. Female monogamy is associated with the former, polyandry with the latter. I suggest that the intensity of sexual selection operating on males in systems where the probability of mating is low has favored male ability to control female receptivity. Reproductive success of males is universally correlated to successful foraging for sugar or blood and (in some species and ecological conditions) to body size. Understanding the ecological basis of the mating systems of these flies will help formulate integrative, sustainable, and biologically lucid approaches for their control.


Subject(s)
Diptera/classification , Diptera/physiology , Sexual Behavior, Animal/classification , Sexual Behavior, Animal/physiology , Animals , Blood , Feeding Behavior , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...