Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 27(23): 13983-7, 2011 Dec 06.
Article in English | MEDLINE | ID: mdl-22054300

ABSTRACT

We demonstrate the accurate nanoscale mapping of near-surface loss and storage moduli on a polystyrene-polypropylene blend with contact resonance force microscopy (CR-FM). These viscoelastic properties are extracted from spatially resolved maps of the contact resonance frequency and quality factor of the AFM cantilever. We consider two methods of data acquisition: (i) discrete stepping between mapping points and (ii) continuous scanning. For point mapping and low-speed scanning, the values of the relative loss and storage modulus are in good agreement with the time-temperature superposition of low-frequency dynamic mechanical analysis measurements to the high frequencies probed by CR-FM.

2.
Ann Biomed Eng ; 38(7): 2428-37, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20195763

ABSTRACT

The objective of this study was to determine the viscoelastic properties present within the intermediate zone of the porcine temporomandibular joint (TMJ) disc using nanoindentation. A 50-microm conospherical indenter tip using a displacement-controlled ramp function with a 600 nm/s loading and unloading rate, a 3000-nm peak displacement with a holding period of 30 s was used to indent the samples. Experimental load-relaxation tests were performed on the TMJ disc to determine the response in three different directions; the mediolateral, anteroposterior, and articular surface directions. The experimental data were analyzed using a generalized Maxwell model to obtain values for short- and long-time relaxation modulus and of material time constants. The short time relaxation modulus E ( I ) values were 180.92, 64.99, and 487.77 kPa for testing done on the articular surface, mediolateral, and anteroposterior directions, respectively. Corresponding values for the long-time relaxation modulus E (infinity) were 45.9, 14.97, and 133.5 kPa. The method confirmed anisotropy present within the central intermediate zone of the porcine TMJ disc due to the directional orientation of the collagen fibers.


Subject(s)
Temporomandibular Joint Disc/physiology , Animals , Anisotropy , Female , Male , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...