Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sovrem Tekhnologii Med ; 15(2): 28-38, 2023.
Article in English | MEDLINE | ID: mdl-37389023

ABSTRACT

Patient-specific in vitro tumor models are a promising platform for studying the mechanisms of oncogenesis and personalized selection of drugs. In case of glial brain tumors, development and use of such models is particularly relevant as the effectiveness of such tumor treatment remains extremely unsatisfactory. The aim of the study was to develop a model of a 3D tumor glioblastoma spheroid based on a patient's surgical material and to study its metabolic characteristics by means of fluorescence lifetime imaging microscopy of metabolic coenzymes. Materials and Methods: The study was conducted with tumor samples from patients diagnosed with glioblastoma (Grade IV). To create spheroids, primary cultures were isolated from tumor tissue samples; the said cultures were characterized morphologically and immunocytochemically, and then planted into round-bottom ultra low-adhesion plates. The number of cells for planting was chosen empirically. The characteristics of the growth of cell cultures were compared with spheroids from glioblastomas of patients with U373 MG stable line of human glioblastoma. Visualization of autofluorescence of metabolic coenzymes of nicotinamide adenine dinucleotide (phosphate) NAD(P)H and flavin adenine dinucleotide (FAD) in spheroids was performed by means of an LSM 880 laser scanning microscope (Carl Zeiss, Germany) with a FLIM module (Becker & Hickl GmbH, Germany). The autofluorescence decay parameters were studied under normoxic and hypoxic conditions (3.5% О2). Results: An original protocol for 3D glioblastoma spheroids cultivation was developed. Primary glial cultures from surgical material of patients were obtained and characterized. The isolated glioblastoma cells had a spindle-shaped morphology with numerous processes and a pronounced granularity of cytoplasm. All cultures expressed glial fibrillary acidic protein (GFAP). The optimal seeding dose of 2000 cells per well was specified; its application results in formation of spheroids with a dense structure and stable growth during 7 days. The FLIM method helped to establish that spheroid cells from the patient material had a generally similar metabolism to spheroids from the stable line, however, they demonstrated more pronounced metabolic heterogeneity. Cultivation of spheroids under hypoxic conditions revealed a transition to a more glycolytic type of metabolism, which is expressed in an increase in the contribution of the free form of NAD(P)H to fluorescence decay. Conclusion: The developed model of tumor spheroids from patients' glioblastomas in combination with the FLIM can serve as a tool to study characteristics of tumor metabolism and develop predictive tests to evaluate the effectiveness of antitumor therapy.


Subject(s)
Glioblastoma , Glioma , Humans , Glioblastoma/diagnostic imaging , NAD , Cytoplasm , Coenzymes , Hypoxia
2.
Sovrem Tekhnologii Med ; 15(3): 5-15, 2023.
Article in English | MEDLINE | ID: mdl-38435479

ABSTRACT

The main problem in the field of tumor immunotherapy is the lack of reliable biomarkers that allow pre-determining the susceptibility of individual patients to treatment, as well as insufficient knowledge about the resistance mechanisms. Biomarkers based on the autofluorescence of metabolic coenzymes in immune cells can become a powerful new predictor of early tumor response to treatment, whereas the optical FLIM method can be a tool to predict the effectiveness of immunotherapy, which allows preserving the spatial structure of the sample and obtaining results on the metabolic status of immune cells in real time. The aim of the study is to conduct a metabolic autofluorescence imaging study of the NAD(P)H metabolic coenzyme in immune cells of freshly isolated lymph nodes as a potential marker for assessing the effectiveness of an early response to immunotherapy. Materials and Methods: The study was carried out on C57Bl/6 FoxP3-EGFP mice with B16F0 melanoma implanted near the inguinal lymph node. The mice were injected with antibodies to CTLA-4 (Bio X Cell, USA) (250 µg per mouse, intraperitoneally on days 7, 8, 11, and 12 of the tumor growth). FLIM images in the nicotinamide adenine dinucleotide (phosphate) coenzyme (NAD(P)H) channel (excitation - 375 nm, reception - 435-485 nm) were received using an LSM 880 fluorescent confocal laser scanning microscope (Carl Zeiss, Germany) equipped with a FLIM Simple-Tau module 152 TCSPC (Becker & Hickl GmbH, Germany). Flow cytometry was conducted using a BD FACSAria III cell sorter (BD Biosciences, USA). Results: Immunotherapy with checkpoint inhibitors resulted in marked metabolic rearrangements in T cells of freshly isolated lymph nodes in responder mice, with inhibition of the tumor growth. Fluorescence lifetime imaging data on NAD(P)H indicated an increase in the free fraction of NADH α1, a form associated with glycolysis to meet high demands of the activated T cells and pro-inflammatory cytokine synthesis. In contrast, non-responder mice with advanced tumors showed low values of the ratio of free fraction to bound α1/α2, which may be related to mechanisms of resistance to therapy.The response to immunotherapy was verified by data on the expression of activation and proliferation markers by means of flow cytometry. The authors observed an increase in the production of the pro-inflammatory cytokine IFN-γ in effector T cells in responder mice compared to untreated controls and non-responders. In addition, an increase in the expression of the surface activation markers CD25 and CD69 was registered compared to untreated controls. Conclusion: Use of the FLIM method allowed to demonstrate that autofluorescence of the NAD(P)H coenzyme is sensitive to the response to checkpoint immunotherapy and can be used as a reliable marker of the effectiveness of response to treatment.


Subject(s)
NAD , Neoplasms , Animals , Mice , Coenzymes , CTLA-4 Antigen , Cytokines , Immunotherapy , T-Lymphocytes
3.
Sovrem Tekhnologii Med ; 15(3): 61-71, 2023.
Article in English | MEDLINE | ID: mdl-38435477

ABSTRACT

Gliomas are the most common type of primary malignant brain tumors. The choice of treatments for these tumors was quite limited for many years, and therapy results generally remain still unsatisfactory. Recently, a significant breakthrough in the treatment of many forms of cancer occurred when personalized targeted therapies were introduced which inhibit tumor growth by affecting a specific molecular target. Another trend gaining popularity in oncology is the creation of patient-derived tumor models which can be used for drug screening to select the optimal therapy regimen. Molecular and genetic mechanisms of brain gliomas growth are considered, consisting of individual components which could potentially be exposed to targeted drugs. The results of the literature review show a higher efficacy of the personalized approach to the treatment of individual patients compared to the use of standard therapies. However, many unresolved issues remain in the area of predicting the effectiveness of a particular drug therapy regimen. The main hopes in solving this issue are set on the use of patient-derived tumor models, which can be used in one-stage testing of a wide range of antitumor drugs.


Subject(s)
Glioma , Precision Medicine , Humans , Glioma/drug therapy , Drug Delivery Systems , Drug Evaluation, Preclinical , Brain
4.
Biochemistry (Mosc) ; 81(11): 1303-1308, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27914456

ABSTRACT

Tumor necrosis factor (TNF) is a pleiotropic cytokine that regulates many important processes in the body. TNF production in a physiological state supports the structure of lymphoid organs and determines the development of lymphoid cells in hematopoiesis. However, chronic TNF overexpression leads to the development of various autoimmune disorders. Sites of TNF production in the naïve state remain unclear due to the lack of in vivo models. In the present study, we used TNF-2A-Kat reporter mice to monitor the expression of TNF in different tissues. Comparative analysis of tissue fluorescence in TNF-2A-Kat reporter mice and wild type mice revealed constitutive expression of TNF in the skin of naïve adult mice. In the skin of TNF-2A-Kat reporter mouse embryos, no statistically significant differences in the expression of TNF compared to wild type animals were observed. Furthermore, we established that local depletion of microflora with topical antibiotics leads to a reduction in the fluorescence signal. Thus, we assume that the skin microflora is responsible for the expression of TNF in the skin of mice.


Subject(s)
Gene Expression Regulation/immunology , Microbiota/immunology , Skin/immunology , Skin/microbiology , Tumor Necrosis Factor-alpha/immunology , Animals , Mice , Mice, Transgenic , Skin/metabolism , Tumor Necrosis Factor-alpha/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...