Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 18(2): 192-8, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20585881

ABSTRACT

PURPOSE: Industrial wastewater flow caused operational difficulties in the wastewater treatment plant in Debrecen, Hungary. Bioaugmentation was successfully applied to maintain effluent quality in the periods when wastewater of high starch content was accepted, but, at the end of 2008, the nitrification capacity of the plant decreased considerably due to improperly pre-treated pharmaceutical wastewater. METHODS AND MATERIAL: Dynamic simulations were carried out in a prototype programme developed by the Environmental Expert System Research Group at the University of Pannonia, Hungary. Several parameters for heterotrophic biomass were adjusted in function of time, and the specific growth rate of autotrophic biomass was altered in function of time and temperature in order to describe the effects of inoculation and toxic influence. Simulations were carried out with both constant and adjusted parameters. RESULTS: Though results on effluent COD of the different modelling versions were similar, the ammonia concentration fitted the measured data only when modified parameters were used. The study revealed that the autotrophic biomass had slowly adapted to the toxic compound. Different control strategies of aeration and decreased excess sludge removal rate were tested to enhance the nitrification in the critical time intervals. The amount of ammonia and inorganic nitrogen decreased in all cases while the oxygen demand increased to a maximum of 10.1%. CONCLUSIONS: Reducing excess sludge removal rate gave satisfactory results even without changing aeration. Further improvement could be achieved by introducing aeration into the post-denitrification reactor. The combination of the two modifications can compensate for the effect caused by toxicity.


Subject(s)
Computer Simulation , Sewage/analysis , Sewage/microbiology , Waste Disposal, Fluid , Water Purification/methods , Gram-Negative Aerobic Bacteria , Gram-Positive Bacteria , Hungary , Models, Biological , Models, Organizational , Nitrification , Nitrogen Compounds/analysis , Oxygen/metabolism , Seasons , Software , Starch/metabolism , Temperature , Time Factors , Water Microbiology , Water Supply/analysis
2.
J Phys Chem A ; 110(5): 1817-23, 2006 Feb 09.
Article in English | MEDLINE | ID: mdl-16451013

ABSTRACT

The infrared emission spectra of CO adsorbed on alumina-supported 1, 3, and 5 wt % Rh, Ir, and Pt metal-containing catalysts were studied at 423 and 473 K. While CO is adsorbed in dicarbonyl (dimer), linearly (on-top) bonded and bridged carbonyl forms on rhodium and platinum, the dimer form is dominant on iridium. The relative intensity of Rh-CO and Ir-CO linear bands decrease with increasing temperature compared to the intensity of the dicarbonyl bands; the corresponding bands on Pt behave the opposite way. Two dicarbonyl and two linear Pt-CO bands were identified in the infrared spectra of Pt/Al(2)O(3) catalysts. The surface structure (kinked or planar Pt atoms), the dispersity of the metal, the temperature, and the quantity of adsorbed CO on the surfaces all have an effect on the fine structure of the Pt-CO stretching bands. The metal-carbon and CO stretching force constants were calculated for surface dicarbonyl, linearly bonded CO, and bridged carbonyl species. The metal-carbon stretching wavenumbers and force constants were predicted and compared between surface species and metal carbonyl complexes. The iridium-carbon bonds were found always stronger than the Rh-C and Pt-C ones in all surface species. The observed stretching wavenumbers and force constants seem to support the idea that CO and metal-carbon bonds are always stronger in metal carbonyl complexes than in adsorbed surface species. The distribution and mode of CO adsorption on surface metal sites can be effectively studied by means of infrared emission spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...