Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Toxicol Sci ; 49(5): 209-218, 2024.
Article in English | MEDLINE | ID: mdl-38692908

ABSTRACT

The immune system is sensitive to many chemicals. Among dioxin compounds, 2,3,7,8-tetrachlorodizenzo-p-dioxin (TCDD) is the most toxic environmental pollutant. The effects of perinatal maternal exposure to dioxins may persist into childhood. However, there have been no reports to date on the effects of exposure to dioxins during infancy, when the immune organs are developing. Therefore, we investigated the effects of TCDD and antigen exposure during lactation on immune function, especially antibody production capacity, in adult mice. Beginning the day after delivery, lactating mothers were orally administered TCDD or a mixture of TCDD and ovalbumin (OVA) daily for 4 weeks, until the pups were weaned. At 6 weeks of age, progeny mice were orally administered OVA daily for 10 weeks, while non-progeny mice were orally administered OVA or a mixture of TCDD and OVA daily for 10 weeks. Production of serum OVA-specific IgG was examined weekly. The amount of TCDD transferred from the mother to the progeny via breast milk was determined by measuring TCDD in the gastric contents of the progeny. A trend toward increasing IgA titer was observed in TCDD-treated mice, and production of IgE was observed only in progeny whose mothers were treated with TCDD and OVA. The results suggest that exposure to TCDD and OVA in breast milk can affect immune function in newborns.


Subject(s)
Lactation , Ovalbumin , Polychlorinated Dibenzodioxins , Animals , Female , Ovalbumin/immunology , Ovalbumin/administration & dosage , Polychlorinated Dibenzodioxins/toxicity , Maternal Exposure/adverse effects , Antibody Formation/drug effects , Environmental Pollutants/toxicity , Immunoglobulin G/blood , Immunoglobulin A/blood , Immunoglobulin E/blood , Immunoglobulin E/immunology , Antigens/immunology , Mice , Pregnancy , Milk/immunology , Male , Milk, Human/immunology , Administration, Oral
2.
Toxicol Rep ; 9: 53-57, 2022.
Article in English | MEDLINE | ID: mdl-35004181

ABSTRACT

Dioxins are persistent environmental toxins that are still present in the food supply despite strong efforts to minimize exposure. Dioxins ingested by humans accumulate in fat and are excreted very slowly, so their long-term effects at low concentrations are a matter of concern. It is necessary to consider long-term, low-dose continuous administration under conditions that are as close as possible to a person's diet. In this study, we orally administered 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most common dioxin, at low doses in mice and observed the immunological effects. We found that antigen-specific (OVA) antibody production in the serum increased dose-dependently by TCDD concentrations below 500 ng/kg after long-term (10 weeks) exposure. Similar increases were seen in fecal and vaginal samples but were not significant. Th1 and Th2 lymphocyte responses, as determined by antibody and cytokine production, also significantly increased dose-dependently up to 500 ng/kg TCDD, and the Th1/Th2 balance was shifted toward Th1. These results indicate that low-dose, long-term TCDD exposure results in immunological abnormalities, perhaps by increasing antigen permeability. Different doses of dioxins may have opposing effects, being immunostimulatory at low doses (100 ng/kg/day) and immunosuppressive at high doses (500 ng/kg/day).

3.
Sci Rep ; 10(1): 7623, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32376995

ABSTRACT

Small-molecule agonism of peroxisome proliferator-activated receptor α (PPARα), a ligand-activated transcriptional factor involved in regulating fatty acid metabolism, is an important approach for treating dyslipidemia. Here, we determined the structures of the ligand-binding domain (LBD) of PPARα in complex with 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivatives, which were recently identified as PPARα-selective activators with markedly different structures from those of the well-known PPARα agonists fibrates. The crystal structures of the complexes showed that they form a canonical hydrogen-bond network involving helix 12 in the LBD, which is thought to be essential for PPARα activation, as also observed for fibrates. However, the phenyl side chain of the compounds occupies a small cavity between Ile272 and Ile354, which is rarely accessed by fibrates. This unique feature may be essential for subtype selectivity and combine with the well-characterized binding mode of fibrates to improve activity. These findings demonstrate the advantage of using 1H-pyrazolo-[3,4-b]pyridine as a skeleton of PPARα agonists and provide insight into the design of molecules for treating dyslipidemia.


Subject(s)
PPAR alpha/metabolism , Pyrazoles/chemistry , Pyridines/chemistry , Pyridines/pharmacology , Humans , Ligands , Molecular Docking Simulation , PPAR alpha/chemistry , Protein Domains , Pyridines/metabolism
4.
Bioorg Med Chem Lett ; 29(16): 2124-2128, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31320147

ABSTRACT

We previously reported that 1H-pyrazolo-[3,4-b]pyridine-4-carboxylic acid derivative 6 is an agonist of human peroxisome proliferator-activated receptor alpha (hPPARα). Here, we prepared a series of 1H-pyrazolo-[3,4-b]pyridine-4-carboxylic acid derivatives in order to examine the structure-activity relationships (SAR). SAR studies clearly indicated that the steric bulkiness of the substituent on 1H-pyrazolo-[3,4-b]pyridine ring, the position of the distal hydrophobic tail part, and the distance between the distal hydrophobic tail part and the acidic head part are critical for hPPARα agonistic activity. These SAR results are somewhat different from those reported for fibrate-class hPPARα agonists. A representative compound (10f) was as effective as fenofibrate in reducing the elevated plasma triglyceride levels in a high-fructose-fed rat model.


Subject(s)
PPAR alpha/agonists , Pyridines/chemistry , Humans , Molecular Structure , Structure-Activity Relationship
5.
Chem Pharm Bull (Tokyo) ; 67(3): 199-202, 2019.
Article in English | MEDLINE | ID: mdl-30827999

ABSTRACT

Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor superfamily and include three subtypes (PPARα, PPARδ, and PPARγ). They regulate gene expression in a ligand-dependent manner. PPARα plays an important role in lipid metabolism. PPARγ is involved in glucose metabolism and is a potential therapeutic target in Type 2 diabetes. PPARδ ligands are candidates for the treatment of metabolic disorders. Thus, the detection of PPAR ligands may facilitate the treatment of various diseases. In this study, to identify PPAR ligands, we engineered reporter cell lines that can be used to quantify PPARγ and PPARδ activity. We evaluated several known ligands using these reporter cell lines and confirmed that they are useful for PPAR ligand detection. Furthermore, we evaluated extracts of approximately 200 natural resources and found various extracts that enhance reporter gene activity. Finally, we identified a main alkaloid of the Evodia fruit, evodiamine, as a PPARγ activator using this screening tool. These results suggest that the established reporter cell lines may serve as a useful cell-based screening tool for finding PPAR ligands to ameliorate metabolic syndromes.


Subject(s)
Metabolic Syndrome/prevention & control , Peroxisome Proliferator-Activated Receptors/agonists , Peroxisome Proliferator-Activated Receptors/metabolism , Cell Line , High-Throughput Screening Assays , Humans , Ligands , Metabolic Syndrome/metabolism , Peroxisome Proliferator-Activated Receptors/genetics , Plant Extracts/pharmacology
6.
Toxicol Rep ; 5: 737-743, 2018.
Article in English | MEDLINE | ID: mdl-29928592

ABSTRACT

People are frequently and unintentionally exposed to many chemical compounds, such as environmental pollutants and endocrine-disrupting chemicals (EDCs), in food and from the atmosphere. In particular, endocrine-disrupting TBBPA and dioxins are found in human breast milk and in the body. Conventional studies evaluate toxicity by administering a single substance to cells or animals, but evaluation of the toxicity of mixtures of these ingested compounds is essential for "true" toxicological assessment. We evaluated toxic effects in vitro using human mesenchymal stem cells (hMSCs). TBBPA increased the number of lipid droplets, and upregulated the expression of adipocyte-related mRNA, aP2 and LPL, through a PPARγ-dependent mechanism. TCDD suppressed lipid droplets and adipocyte-related mRNA levels. Adipocyte differentiation was stimulated by TBBPA and inhibited by TCDD in a dose-dependent manner. TBBPA did not influence osteoblast differentiation, but TCDD suppressed ALP staining and activity, calcium deposition, and osteoblast-related mRNA levels. In a mixture of TBBPA and TCDD, TBBPA inhibited TCDD suppression of adipocyte and osteoblast differentiation in a dose-dependent manner. Interestingly, we observed lipid droplets in TBBPA-treated cells differentiated into osteoblasts. These results suggest that TBBPA and TCDD disrupted differentiation into adipocytes and osteoblasts and contributes to a more complete toxicological understanding of exposure to these chemical substances.

7.
J Biol Chem ; 293(26): 10333-10343, 2018 06 29.
Article in English | MEDLINE | ID: mdl-29764933

ABSTRACT

Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that belongs to the superfamily of nuclear hormone receptors. PPARα is mainly expressed in the liver, where it activates fatty acid oxidation and lipoprotein metabolism and improves plasma lipid profiles. Therefore, PPARα activators are often used to treat patients with dyslipidemia. To discover additional PPARα activators as potential compounds for use in hypolipidemic drugs, here we established human hepatoblastoma cell lines with luciferase reporter expression from the promoters containing peroxisome proliferator-responsive elements (PPREs) and tetracycline-regulated expression of full-length human PPARα to quantify the effects of chemical ligands on PPARα activity. Using the established cell-based PPARα-activator screening system to screen a library of >12,000 chemical compounds, we identified several hit compounds with basic chemical skeletons different from those of known PPARα agonists. One of the hit compounds, a 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivative we termed compound 3, selectively up-regulated PPARα transcriptional activity, leading to PPARα target gene expression both in vitro and in vivo Of note, the half-maximal effective concentrations of the hit compounds were lower than that of the known PPARα ligand fenofibrate. Finally, fenofibrate or compound 3 treatment of high fructose-fed rats having elevated plasma triglyceride levels for 14 days indicated that compound 3 reduces plasma triglyceride levels with similar efficiency as fenofibrate. These observations raise the possibility that 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivatives might be effective drug candidates for selective targeting of PPARα to manage dyslipidemia.


Subject(s)
Gene Expression Regulation , PPAR alpha/genetics , PPAR alpha/metabolism , Animals , Drug Evaluation, Preclinical , Fructose/adverse effects , Gene Expression Regulation/drug effects , Genes, Reporter/genetics , Humans , Hypolipidemic Agents/pharmacology , Ligands , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...