Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 126: 154-162, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26748595

ABSTRACT

The level, distribution, compositional pattern and possible sources of polycyclic aromatic hydrocarbons (PAHs) in Lanzhou urban soil of Northwest China were investigated in this study. The total level of 22 PAHs ranged from 115 to 12,100 µg kg(-1) and that of 16 priority PAHs from 82.4 to 10,900 µg kg(-1). Seven carcinogenic PAHs generally accounted for 6.18-57.4% of total 22 PAHs. Compared with data from those reported about urban areas, PAH contamination in Lanzhou urban soils was moderate. Among different functional areas, higher level of PAHs was found along roadsides and in the industrial district (p<0.01), while lower levels were detected in the commercial, park and residential districts. The composition of PAHs was characterized by high molecular weight PAHs (≥4 rings), among which fluoranthene, benz[a]anthracene and phenanthrene were the most dominant components. Correlation analysis suggested that low molecular weight PAHs and high molecular weight PAHs originated from different sources and further corroborated that TOC was an important factor in the accumulation of PAHs in soil. Isomer ratios and principal component analysis indicated that PAHs in urban soil derived primarily from emissions resulting from the combustion of biomass, coal and petroleum products. Toxic equivalent concentrations (BaP(eq)) of soil PAHs ranged from 6.12 to 1302 µg BaP(eq) kg(-1), with a mean of 138 µg BaP(eq) kg(-1). The results suggested that human exposure to those soils which polluted by high concentrations of PAHs through direct ingestion or inhalation of suspended soil particles probably poses a significant risk to human health from the carcinogenic effects of PAHs.


Subject(s)
Industrial Waste/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Soil/chemistry , China , Cities , Coal/analysis , Humans , Principal Component Analysis
2.
Environ Geochem Health ; 38(1): 243-53, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25980560

ABSTRACT

The primary objective of this study was to investigate the effect of biochar, produced from wheat residue at different temperatures, on the adsorption of diesel oil by loess soil. Kinetic and equilibrium data were processed to understand the adsorption mechanism of diesel by biochar-affected loess soil; dynamic and thermodynamic adsorption experiments were conducted to characterize this adsorption. The surface features and chemical structure of biochar, modified at varying pyrolytic temperatures, were investigated using surface scanning electron microscopy and Fourier transform infrared analysis. The kinetic data showed that the adsorption of diesel oil onto loess soil could be described by a pseudo-second-order kinetic model, with the rate-controlling step being intraparticle diffusion. However, in the presence of biochar, boundary layer control and intraparticle diffusion were both involved in the adsorption. Besides, the adsorption equilibrium data were well described by the Freundlich isothermal model. The saturated adsorption capacity weakened as temperature increased, suggesting a spontaneous exothermic process. Thermodynamic parameter analysis showed that adsorption was mainly a physical process and was enhanced by chemical adsorption. The adsorption capacity of loess soil for diesel oil was weakened with increasing pH. The biochar produced by pyrolytic wheat residue increased the adsorption behavior of petroleum pollutants in loess soil.


Subject(s)
Charcoal/chemistry , Gasoline/analysis , Hot Temperature , Incineration , Soil Pollutants/chemistry , Adsorption , China , Kinetics , Triticum/chemistry
3.
Ecotoxicol Environ Saf ; 106: 11-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24836872

ABSTRACT

The status, source and health risk of street-dust-borne polycyclic aromatic hydrocarbons (PAHs) in Lanzhou of Northwest China were investigated. The total level of the 21 PAHs ranged from 1470 to 13,700 µg kg(-1) and that of the 16 priority PAHs from 1240 to 10,700 µg kg(-1). Higher levels of PAHs were mainly distributed in the Chengguan and Qilihe districts at Lanzhou central areas, and the lower levels were in Anning and Xigu districts. The level of seven potential carcinogenic PAHs generally accounted for 35-40 percent of total PAHs, and the PAHs contained two to four rings, mainly phenanthrene, benzo[b]fluoranthene and fluoranthene. The total level of PAHs increased with the decreasing particle size in the street dust. The correlation analysis suggested that the total organic carbon (TOC) was only slightly affected the PAH accumulation in street dust. The isomer ratios and principal component analysis indicated that the dust-borne PAHs in the dust were derived primarily from the combustion of biomass, coal and petroleum emission. The toxic equivalent concentrations (BaP(eq)) of dust-borne PAHs ranged from 115 to 827 µg BaP(eq) kg(-1), with a mean of 300 µg BaP(eq) kg(-1). The 95 percent upper confidence limit of Incremental Lifetime Cancer Risk due to human exposure to urban surface dust-borne PAHs in Lanzhou urban area was 2.031 × 10(-6) for children and 1.935 × 10(-6) for adults.


Subject(s)
Cities/statistics & numerical data , Dust/analysis , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Carbon/analysis , China , Humans , Industry , Particle Size , Principal Component Analysis , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...