Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020163

ABSTRACT

Logged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems1 that provide refugia for large amounts of biodiversity2,3, so we cannot afford to underestimate their conservation value4. Here we present empirically defined thresholds for categorizing the conservation value of logged forests, using one of the most comprehensive assessments of taxon responses to habitat degradation in any tropical forest environment. We analysed the impact of logging intensity on the individual occurrence patterns of 1,681 taxa belonging to 86 taxonomic orders and 126 functional groups in Sabah, Malaysia. Our results demonstrate the existence of two conservation-relevant thresholds. First, lightly logged forests (<29% biomass removal) retain high conservation value and a largely intact functional composition, and are therefore likely to recover their pre-logging values if allowed to undergo natural regeneration. Second, the most extreme impacts occur in heavily degraded forests with more than two-thirds (>68%) of their biomass removed, and these are likely to require more expensive measures to recover their biodiversity value. Overall, our data confirm that primary forests are irreplaceable5, but they also reinforce the message that logged forests retain considerable conservation value that should not be overlooked.

2.
J Neuroinflammation ; 17(1): 91, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32197653

ABSTRACT

BACKGROUND: Early-life stress (ES) is an emerging risk factor for later life development of Alzheimer's disease (AD). We have previously shown that ES modulates amyloid-beta pathology and the microglial response to it in the APPswe/PS1dE9 mouse model. Because astrocytes are key players in the pathogenesis of AD, we studied here if and how ES affects astrocytes in wildtype (WT) and APP/PS1 mice and how these relate to the previously reported amyloid pathology and microglial profile. METHODS: We induced ES by limiting nesting and bedding material from postnatal days (P) 2-9. We studied in WT mice (at P9, P30, and 6 months) and in APP/PS1 mice (at 4 and 10 months) (i) GFAP coverage, cell density, and complexity in hippocampus (HPC) and entorhinal cortex (EC); (ii) hippocampal gene expression of astrocyte markers; and (iii) the relationship between astrocyte, microglia, and amyloid markers. RESULTS: In WT mice, ES increased GFAP coverage in HPC subregions at P9 and decreased it at 10 months. APP/PS1 mice at 10 months exhibited both individual cell as well as clustered GFAP signals. APP/PS1 mice when compared to WT exhibited reduced total GFAP coverage in HPC, which is increased in the EC, while coverage of the clustered GFAP signal in the HPC was increased and accompanied by increased expression of several astrocytic genes. While measured astrocytic parameters in APP/PS1 mice appear not be further modulated by ES, analyzing these in the context of ES-induced alterations to amyloid pathology and microglial shows alterations at both 4 and 10 months of age. CONCLUSIONS: Our data suggest that ES leads to alterations to the astrocytic response to amyloid-ß pathology.


Subject(s)
Alzheimer Disease/metabolism , Astrocytes/metabolism , Entorhinal Cortex/metabolism , Hippocampus/metabolism , Stress, Psychological/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Animals , Astrocytes/pathology , Biomarkers/metabolism , Cell Count , Disease Models, Animal , Entorhinal Cortex/pathology , Glial Fibrillary Acidic Protein/metabolism , Hippocampus/pathology , Mice , Mice, Transgenic , Microglia/metabolism , Microglia/pathology , Presenilin-1/genetics , Stress, Psychological/pathology
3.
EMBO Rep ; 21(3): e48530, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32003148

ABSTRACT

Pathological aggregation of amyloid-ß (Aß) is a main hallmark of Alzheimer's disease (AD). Recent genetic association studies have linked innate immune system actions to AD development, and current evidence suggests profound gender differences in AD pathogenesis. Here, we characterise gender-specific pathologies in the APP23 AD-like mouse model and find that female mice show stronger amyloidosis and astrogliosis compared with male mice. We tested the gender-specific effect of lack of IL12p40, the shared subunit of interleukin (IL)-12 and IL-23, that we previously reported to ameliorate pathology in APPPS1 mice. IL12p40 deficiency gender specifically reduces Aß plaque burden in male APP23 mice, while in female mice, a significant reduction in soluble Aß1-40 without changes in Aß plaque burden is seen. Similarly, plasma and brain cytokine levels are altered differently in female versus male APP23 mice lacking IL12p40, while glial properties are unchanged. These data corroborate the therapeutic potential of targeting IL-12/IL-23 signalling in AD, but also highlight the importance of gender considerations when studying the role of the immune system and AD.


Subject(s)
Alzheimer Disease , Interleukin-12/deficiency , Interleukin-23 Subunit p19/deficiency , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Female , Interleukin-12/genetics , Interleukin-12 Subunit p40/deficiency , Interleukin-12 Subunit p40/genetics , Interleukin-23 Subunit p19/genetics , Male , Mice , Mice, Transgenic , Plaque, Amyloid
4.
Ecol Lett ; 19(2): 133-142, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26610058

ABSTRACT

Understanding the mechanisms that determine how phytoplankton adapt to warming will substantially improve the realism of models describing ecological and biogeochemical effects of climate change. Here, we quantify the evolution of elevated thermal tolerance in the phytoplankton, Chlorella vulgaris. Initially, population growth was limited at higher temperatures because respiration was more sensitive to temperature than photosynthesis meaning less carbon was available for growth. Tolerance to high temperature evolved after ≈ 100 generations via greater down-regulation of respiration relative to photosynthesis. By down-regulating respiration, phytoplankton overcame the metabolic constraint imposed by the greater temperature sensitivity of respiration and more efficiently allocated fixed carbon to growth. Rapid evolution of carbon-use efficiency provides a potentially general mechanism for thermal adaptation in phytoplankton and implies that evolutionary responses in phytoplankton will modify biogeochemical cycles and hence food web structure and function under warming. Models of climate futures that ignore adaptation would usefully be revisited.

SELECTION OF CITATIONS
SEARCH DETAIL
...