Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 382(2266): 20230089, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38104615

ABSTRACT

In the search for clues to the matter-antimatter puzzle, experiments with atoms or molecules play a particular role. These systems allow measurements with very high precision, as demonstrated by the unprecedented limits down to [Formula: see text] e cm on electron EDM using molecular ions, and relative measurements at the level of [Formula: see text] in spectroscopy of antihydrogen atoms. Building on these impressive measurements, new experimental directions offer potential for drastic improvements. We review here some of the new perspectives in those fields and their associated prospects for new physics searches. This article is part of the theme issue 'The particle-gravity frontier'.

2.
Rev Sci Instrum ; 93(2): 023201, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35232145

ABSTRACT

We describe the design and performance of a large magnetic trap for storage and cooling of atomic hydrogen (H). The trap operates in the vacuum space of a dilution refrigerator at a temperature of 1.5 K. Aiming at a large volume of the trap, we implemented the octupole configuration of linear currents (Ioffe bars) for the radial confinement, combined with two axial pinch coils and a 3 T solenoid for the cryogenic H dissociator. The octupole magnet consists of eight race-track segments, which are compressed toward each other with magnetic forces. This provides a mechanically stable and robust construction with a possibility of replacement or repair of each segment. A maximum trap depth of 0.54 K (0.8 T) was reached, corresponding to an effective volume of 0.5 l for hydrogen gas at 50 mK. This is an order of magnitude larger than ever used for trapping atoms.

3.
Phys Rev Lett ; 123(10): 103201, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31573306

ABSTRACT

We report the first cooling of atomic anions by laser radiation. O^{-} ions confined in a linear Paul trap were cooled by selectively photodetaching the hottest particles. For this purpose, anions with the highest total energy were illuminated with a 532 nm laser at their maximal radial excursion. Using laser-particle interaction, we realized a both colder and denser ion cloud, achieving a more than threefold temperature reduction from 1.15 to 0.33 eV. Compared with the interaction with a dilute buffer gas, the energy-selective addressing and removal of anions resulted in lower final temperatures, yet acted 10 times faster and preserved twice as large a fraction of ions in the final state. An ensemble of cold negative ions affords the ability to sympathetically cool any other negative ion species, enabling or facilitating a broad range of fundamental studies from interstellar chemistry to antimatter gravity. The technique can be extended to any negative ion species that can be neutralized via photodetachment.

4.
Phys Rev Lett ; 120(13): 133205, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29694180

ABSTRACT

Experiments with antihydrogen (H[over ¯]) for a study of matter-antimatter symmetry and antimatter gravity require ultracold H[over ¯] to reach ultimate precision. A promising path towards antiatoms much colder than a few kelvin involves the precooling of antiprotons by laser-cooled anions. Because of the weak binding of the valence electron in anions-dominated by polarization and correlation effects-only few candidate systems with suitable transitions exist. We report on a combination of experimental and theoretical studies to fully determine the relevant binding energies, transition rates, and branching ratios of the most promising candidate La^{-}. Using combined transverse and collinear laser spectroscopy, we determined the resonant frequency of the laser cooling transition to be ν=96.592 713(91) THz and its transition rate to be A=4.90(50)×10^{4} s^{-1}. Using a novel high-precision theoretical treatment of La^{-} we calculated yet unmeasured energy levels, transition rates, branching ratios, and lifetimes to complement experimental information on the laser cooling cycle of La^{-}. The new data establish the suitability of La^{-} for laser cooling and show that the cooling transition is significantly stronger than suggested by a previous theoretical study.

SELECTION OF CITATIONS
SEARCH DETAIL
...