Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Extremophiles ; 24(2): 207-217, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31734852

ABSTRACT

α-Amylase catalyzes the endohydrolysis of α-1,4-glucosidic linkages in starch and related α-glucans. In the CAZy database, most α-amylases have been classified into the family GH13 counting at present more than 80,000 sequences and ~ 30 different enzyme specificities. The family has already been divided into 42 subfamilies, but additional subfamilies are still emerging. The present bioinformatics study was undertaken in an effort to propose a novel GH13 subfamily around the experimentally characterized α-amylase from the halophilic archaeon Haloarcula hispanica, which until now has not been assigned to any GH13 subfamily. The in silico analysis resulted in collecting a convincing group of putative haloarchaeal α-amylase homologues sharing sequence similarities mainly in their conserved sequence regions (CSRs) and forming a cluster in the evolutionary tree, which is well separated from representatives of established GH13 subfamilies. One of the most exclusive sequence features of the novel GH13 subfamily is the tyrosine (Tyr79 in H. hispanica α-amylase numbering) succeeding the glycine at the beginning of the CSR-VI at the ß2 strand of the catalytic TIM-barrel. Evolutionarily, the novel GH13 α-amylase subfamily was most closely related to two clusters of GH13 subfamilies with the specificity of α-amylase, i.e. subfamilies GH13_5, 6 and 7 as well as GH13_15, 24, 27 and 28.


Subject(s)
Haloarcula , Amino Acid Sequence , Computational Biology , alpha-Amylases
SELECTION OF CITATIONS
SEARCH DETAIL
...