Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
AAPS PharmSciTech ; 24(7): 199, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37783877

ABSTRACT

The performance of a pharmaceutical formulation, such as the drug (API) release rate, is significantly influenced by the properties of the materials used, the composition of the final product and the tablet compression process parameters. However, in some cases, the knowledge of these input parameters does not necessarily provide a reliable description or prediction of tablet performance. Therefore, the knowledge of tablet microstructure is desirable to understand such formulations. Commonly used analytical techniques, such as X-ray tomography and intrusion mercury porosimetry, are not widely used in pharmaceutical companies due to their price and/or toxicity, and therefore, efforts are made to develop a tool for fast and easy microstructure description. In this work, we have developed an image-based method for microstructure description and applied it to a model system consisting of ibuprofen and CaHPO4∙2H2O (API and excipient with different deformability). The obtained parameter, the quadratic mean of the equivalent diameter of the non-deformable, brittle excipient CaHPO4∙2H2O, was correlated with tablet composition, compression pressure and API release rate. The obtained results demonstrate the possibility of describing the tablet dissolution performance in the presented model system based on the microstructural parameter, providing a possible model system for compressed solid dosage forms in which a plastic component is present and specific API release is required.


Subject(s)
Excipients , Models, Biological , Excipients/chemistry , Tablets/chemistry , Drug Compounding , Ibuprofen/chemistry
2.
Materials (Basel) ; 16(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36837047

ABSTRACT

Unsaturated C4 hydrocarbons are abundant in various petrochemical streams. They can be considered as a potential feedstock for the steam-cracking process, where they must be co-processed with C6 and higher (C6+) hydrocarbons of primary naphtha fractions. Co-pyrolysis experiments aiming at the comparison of different C4 hydrocarbon performances were carried out in a laboratory micro-pyrolysis reactor under standardized conditions: 820 °C, 400 kPa, and 0.2 s residence time in the reaction zone. C4 hydrocarbons were co-pyrolyzed with different co-pyrolysis partners containing longer hydrocarbon chain to study the influence of the co-pyrolysis partner structure on the behavior of C4 hydrocarbons. The yields of the pyrolysis products and the conversion of C4 hydrocarbons were used as the performance factors. A regression model was developed and used as a valuable tool for quantifying the inhibition or acceleration effect of co-pyrolysis on the conversion of co-pyrolyzed hydrocarbons. It was found that the performance of different C4 hydrocarbons in co-pyrolysis is substantially different from the separate pyrolysis of the individual components.

4.
Pharmaceutics ; 14(10)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36297608

ABSTRACT

Meloxicam (MLX) is a poorly soluble drug exhibiting strong hydrophobicity. This combination of properties makes dissolution enhancement by particle size reduction ineffective; therefore, combined formulation approaches are required. Various approaches were investigated in this study, including milling, solid dispersions, and self-emulsified lipid formulations. Whereas milling studies of MLX and its co-milling with various polymers have been reported in recent literature, this study is focused on investigating the dissolution kinetics of particulate formulations obtained by co-milling MLX with sodium lauryl sulfate (SLS) in a planetary ball mill with 5-25 wt.% SLS content. The effects of milling time and milling ball size were also investigated. No significant reduction in drug crystallinity was observed under the investigated milling conditions according to XRD data. For the dissolution study, we used an open-loop USP4 dissolution apparatus, and recorded dissolution profiles were fitted according to the Weibull model. The Weibull parameters and a novel criterion-surface utilization factor-were used to evaluate and discuss the drug release from the perspective of drug particle surface changes throughout the dissolution process. The most effective co-milling results were achieved using smaller balls (2 mm), with a co-milling time of up to 15 min SLS content of up to 15 wt.% to increase the dissolution rate by approximately 100 times relative to the physical mixture reference. The results suggest that for hydrophobic drugs, particle performance during dissolution is very sensitive to surface properties and not only to particle size. Co-milling with SLS prepares the surface for faster drug release than that achieved with direct mixing.

6.
Int J Pharm ; 623: 121955, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35753537

ABSTRACT

The aim of this study was to investigate the molecular structures of tadalafil solid dispersions prepared by different techniques and further to relate them to surface free energy information indicating the final amorphousness of the product. Thus, we tried to complement the existing knowledge of solid dispersion formation. Poorly water-soluble tadalafil was combined with different polymers, i.e. Kollidon® 12 PF, Kollidon® VA 64 and Soluplus®, to form model systems. To assess the extent of drug-polymer miscibility, we studied model solid dispersion surface energy using inverse gas chromatography and phase micro-structure using confocal Raman microscopy. The selection of the preparation method was found to play a crucial role in the molecular arrangement of the incorporated drug and the polymer in resulting solid dispersion. Our results showed that a lower surface free energy indicated the formation of a more homogeneous solid dispersion. Conversely, a higher surface free energy corresponded to the heterogeneous systems containing tadalafil amorphous clusters that were captured by Raman mapping. Thus, we successfully introduced a novel evaluation approach of the drug molecular arrangement in solid dispersions that is especially useful for examining the miscibility of the components when the conventional characterizing techniques are inconclusive or yield variable results.


Subject(s)
Polymers , Povidone , Chromatography, Gas , Polymers/chemistry , Povidone/chemistry , Solubility , Tadalafil/chemistry
7.
Eur J Pharm Sci ; 169: 106087, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34863871

ABSTRACT

To enhance dissolution rate of meloxicam (MX), a poorly soluble model drug, a natural polysaccharide excipient chitosan (CH) is employed in this work as a carrier to prepare binary interactive mixtures by either mixing or co-milling techniques. The MX-CH mixtures of three different drug loads were characterized for morphological, granulometric, and thermal properties as well as drug crystallinity. The relative dissolution rate of MX was determined in phosphate buffer of pH 6.8 using the USP-4 apparatus; a significant increase in MX dissolution rate was observed for both mixed and co-milled mixtures comparing to the raw drug. Higher dissolution rate of MX was evidently connected to surface activation by mixing or milling, which was pronounced by the higher specific surface energy as detected by inverse gas chromatography. In addition to the particle size reduction, the carrier effect of the CH was confirmed for co-milling by linear regression between the MX maximum relative dissolution rate and the total surface area of the mixture (R2 = 0.863). No MX amorphization or crystalline structure change were detected. The work of adhesion/cohesion ratio of 0.9 supports the existence of preferential adherence of MX to the coarse particles of CH to form stable interactive mixtures.


Subject(s)
Chitosan , Excipients , Meloxicam , Solubility
8.
AAPS PharmSciTech ; 22(5): 190, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34159445

ABSTRACT

In direct compression of tablets, it is crucial to maintain content uniformity within acceptable margins, especially in formulations with low drug loading. To assure it, complex and multistep mixing processes are utilized in the industry. In this study, we suggest the use of a simple segregation test to evaluate mixing process performance and mixture segregation to produce tablets having satisfying content uniformity while keeping the process as simple and low cost as possible. Eventually, the formulation propensity to segregation can be evaluated using process analytical technology (PAT) to adjust the mixing process parameters to changing source drug properties. In this study, that approach was examined on a model drug with a broad batch-to-batch variability in particle size and shape. Excipients were chosen so that the resulting blend composition mimicked some marketed formulations. For each drug batch, two formulation blends were prepared through different preparation processes (one simple and one complex) and subsequently subjected to segregation tests. From those, segregation coefficients were obtained to compare segregation tendencies and homogeneity robustness between the drug batches and the blend preparation methods. The inter-particulate interactions were substantially influenced by the drug particle morphology and size and resulted in different segregation behavior. Based on these findings, a simple segregation test proved to be a useful tool for determining the suitability of different batches of the model drug to be used in a certain formulation. Moreover, for a particular batch A, the test revealed a potential for mixing process simplification and therefore process intensification and cost reduction.


Subject(s)
Drug Compounding/methods , Excipients/chemical synthesis , Particle Size , Technology, Pharmaceutical/methods , Powders , Pressure , Tablets
9.
Materials (Basel) ; 14(4)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33672812

ABSTRACT

In the pharmaceutical industry, silicates are commonly used excipients with different application possibilities. They are especially utilized as glidants in low concentrations, but they can be used in high concentrations as porous carriers and coating materials in oral solid drug delivery systems. The desirable formulations of such systems must exhibit good powder flow but also good compactibility, which brings opposing requirements on inter-particle interactions. Since magnesium aluminometasilicates (MAS) are known for their interesting flow behavior reported as "negative cohesivity" yet they can be used as binders for tablet compression, the objective of this experimental study was to investigate their particle interactions within a broad range of mechanical stress from several kPa to hundreds of MPa. Magnesium aluminometasilicate (Neusilin® US2 and Neusilin® S2)-microcrystalline cellulose (Avicel® PH102) physical powder mixtures with varying silicate concentrations were prepared and examined during their exposure to different pressures using powder rheology and compaction analysis. The results revealed that MAS particles retain their repulsive character and small contact surface area under normal conditions. If threshold pressure is applied, the destruction of MAS particles and formation of new surfaces leading to particle interactions are observed. The ability of MAS particles to form interactions intensifies with increasing pressure and their amount in a mixture. This "function switching" makes MAS suitable for use as multifunctional excipients since they can act as a glidant or a binder depending on the applied pressure.

10.
Int J Pharm ; 597: 120312, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33540023

ABSTRACT

Co-milling of a drug with a co-former is an efficient technique to improve the solubility of drugs. Besides the particle size reduction, the co-milling process induces a structural disorder and the creation of amorphous regions. The extent of drug solubility enhancement is dependent on the proper choice of co-milling co-former. The aim of this work was to compare the effects of different co-formers (meglumine and polyvinylpyrrolidone) on the dissolution rates of glass forming (indomethacin) and non-glass forming (mefenamic acid) model drugs. A positive impact of the co-milling on the dissolution behavior was observed in all co-milled mixtures, even if no substantial amorphization was observed. While meglumine exhibited pronounced effects on the dissolution rate of both drugs, the slightest enhancement was observed in mixtures with polyvinylpyrrolidone. The evaluation of specific release rate revealed the surface activation of drug particle is responsible for improving the dissolution rate of both drug types, but for the glass former, this surface activation could be persistent while maintaining a high dissolution rate even until a high fraction of drug is released. Our results, therefore, indicate that adequate co-former choice and consideration of drug glass forming ability are important for a successful co-milling approach to poorly water-soluble drugs.


Subject(s)
Pharmaceutical Preparations , Povidone , Drug Compounding , Indomethacin , Particle Size , Solubility
11.
AAPS PharmSciTech ; 21(5): 155, 2020 May 24.
Article in English | MEDLINE | ID: mdl-32449139

ABSTRACT

One of the conventional methods of alleviating the problem of poor drug solubility is the particle size reduction. The efficiency of this approach depends on successful formulation suppressing the drug agglomeration. The aim of this study was to circumvent the dissolution problems of model hydrophobic meloxicam drug (MLX) by using liquid media of different wetting capacity to comminute and formulate a rapidly dissolving carrier system without the use of surfactants. Micro-suspensions of MLX were prepared by ball milling, using water or n-Heptane as a liquid medium. The suspensions were used as granulation liquids to formulate granulate from microcrystalline cellulose and lactose mixture. The release kinetics from prepared granulates were studied using the USP-4 dissolution apparatus. Micro-suspensions prepared via wet milling in non-water liquid media exhibited a massive improvement of release rate compared with source meloxicam and they outperformed their water-milled counterparts. The release rates from those formulations, despite not comprising any surfactant, were comparable to those obtained by different authors using surfactant stabilized nanosuspension formulations. Thus, they can present an interesting formulation alternative for hydrophobic drugs that are dissolution limited.


Subject(s)
Drug Carriers/chemistry , Meloxicam/administration & dosage , Cellulose , Drug Liberation , Kinetics , Lactose , Meloxicam/chemistry , Nanostructures , Particle Size , Solubility , Surface-Active Agents , Suspensions
12.
Pharmaceutics ; 11(8)2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31382377

ABSTRACT

The aims of this study were to investigate how the release of tadalafil is influenced by two grades of polyvinylpyrrolidone (Kollidon® 12 PF and Kollidon® VA 64) and various methods of preparing solid dispersions (solvent evaporation, spray drying and hot-melt extrusion). Tadalafil is poorly water-soluble and its high melting point makes it very sensitive to the solid dispersion preparation method. Therefore, the objectives were to make a comparative evaluation among different solid dispersions and to assess the effect of the physicochemical nature of solid dispersions on the drug release profile with respect to the erosion-diffusion mechanism. The solid dispersions were evaluated for dissolution profiles, XRD, SEM, FT-IR, DSC, and solubility or stability studies. It was found that tadalafil release was influenced by polymer molecular weight. Therefore, solid dispersions containing Kollidon® 12 PF showed a faster dissolution rate compared to Kollidon® VA 64. Tadalafil was released from solid dispersions containing Kollidon® 12 PF because of the combination of erosion and diffusion mechanisms. The diffusion mechanisms were predominant in the initial phase of the experiment and the slow erosion was dissolution-controlling at the second stage of the dissolution. On the contrary, the tadalafil release rate from solid dispersions containing Kollidon® VA 64 was controlled solely by the erosion mechanism.

13.
Eur J Pharm Sci ; 130: 247-259, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30684660

ABSTRACT

Surface energy is extensively adopted to predict the surface properties of materials nowadays. Our study was aimed at utilizing the surface free energy measured by inverse gas chromatography to determine inter-particle interactions and to describe the overall behaviour of mixtures. The model drugs of different solubility (tadalafil, levocetirizine dihydrochloride, vardenafil hydrochloride, and amlodipine besylate) and two grades of polyvinylpyrrolidone (Kollidon® 12 PF, Kollidon® VA 64) were mixed in various ratios. Investigated components were characterized using inverse gas chromatography, particle size distribution and specific surface area. We also determined the work of adhesion and cohesion between the components in the binary mixtures. Due to the formation of levocetirizine agglomerates, the effect of mixing time on both components of the surface free energy was also studied for the binary mixture with Kollidon® VA 64. The results based on the energy analysis, especially positive or negative excess surface energies in theoretical and real binary mixtures, indicate that we can predict whether the components can form the desired ordered (interactive) mixture. For this reason, we have proposed, to the best of our knowledge, different approach to predict the interactions between components and their behaviour in the binary mixtures using inverse gas chromatography in terms of the energy balance based only on the surface parameters (surface free energy, dispersive and specific surface energy). Therefore, the approach of energy balance is an innovative and comparatively simple tool for analysis and identification of interactions between components in particulate systems, which can also predict the quality of the mixing.


Subject(s)
Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/metabolism , Polymers/analysis , Polymers/pharmacokinetics , Chromatography, Gas/methods , Drug Interactions/physiology , Forecasting , Particle Size
14.
Int J Pharm ; 556: 383-394, 2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30529657

ABSTRACT

The mechanism of colloidal silica action to improve flow properties of pharmaceutical powders is known to be based on inter-particle force disruption by silica particles adhered to the particle surface. In the present article, the kinetic aspects of this action are investigated, focusing on non-spherical particles of different size. Blends comprising microcrystalline cellulose or calcium hydrogen phosphate dihydrate and colloidal silica were examined using powder rheometer. The blends were formulated to represent effects of particle size, surface texture, colloidal silica loading, and mixing time. Pre-conditioning, shear testing, compressibility, and flow energy measurements were used to monitor flow properties. Components and blends were analyzed using particle size analysis and scanning electron microscopy (SEM), using energy dispersive spectroscopy (EDS) and back-scattered electron (BSE) detection to determine surface particle arrangement. All studied parameters were found to have substantial effects on flow properties of powder blends. Those effects were explained by identifying key steps of colloidal silica action, which were found to proceed at substantially different rates, causing the flow properties change over time being dependent on the blend formulation and the component properties.


Subject(s)
Calcium Phosphates/chemistry , Cellulose/chemistry , Excipients/chemistry , Silicon Dioxide/chemistry , Chemistry, Pharmaceutical/methods , Colloids/chemistry , Drug Compounding/methods , Microscopy, Electron, Scanning , Particle Size , Powders , Rheology , Spectrometry, X-Ray Emission , Time Factors
15.
Int J Pharm ; 530(1-2): 107-112, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28720535

ABSTRACT

Many newly developed active pharmaceutical ingredients (APIs) have very low solubility in aqueous media. The preparation of solid dispersions (SDs) is one way of avoiding this problem. However, compound wettability and thus solubility are influenced by surface energy. In this study, we used inverse gas chromatography (IGC) to evaluate the surface energies of prepared SDs, and compared them with those obtained for physical mixtures (PMs). SDs containing different weight ratios of crystalline acetaminophen and one of three polymers (Kollidon® 12 PF, Kollidon® VA 64 or Soluplus®) were prepared by the melt-quenching of corresponding PMs. In all cases, as the polymer content increased, the surface energy decreased significantly. For the SDs and PMs containing Soluplus®, this decrease in surface energy showed the same non-linear trend. In the cases of Kollidon® 12 PF and Kollidon® VA 64, the trend was linear, with the SDs showing a steeper decrease in surface energy than the corresponding PMs. Typically, such decreases are ascribed to the dissolution of the crystalline structure of an API. Our results suggest that in the case of the Kollidons, the steeper decrease is caused by another mechanism, namely, strong API-Kollidon interaction leading to the less wettable surface of SDs.


Subject(s)
Acetaminophen/chemistry , Polyethylene Glycols/chemistry , Polyvinyls/chemistry , Povidone/chemistry , Chemistry, Pharmaceutical , Polymers , Solubility
16.
Eur J Pharm Biopharm ; 106: 2-8, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27163240

ABSTRACT

In pharmaceutical industry, the use of lubricants is mostly based on historical experiences or trial and error methods even these days. It may be demanding in terms of the material consumption and may result in sub-optimal drug composition. Powder rheology enables more accurate monitoring of the flow properties and because the measurements need only a small sample it is perfectly suitable for the rare or expensive substances. In this work, rheological properties of four common excipients (pregelatinized maize starch, microcrystalline cellulose, croscarmellose sodium and magnesium stearate) were studied by the FT4 Powder Rheometer, which was used for measuring the compressibility index by a piston and flow properties of the powders by a rotational shear cell. After an initial set of measurements, two excipients (pregelatinized maize starch and microcrystalline cellulose) were chosen and mixed, in varying amounts, with anhydrous colloidal silicon dioxide (Aerosil 200) used as a glidant. The bulk (conditioned and compressed densities, compressibility index), dynamic (basic flowability energy) and shear (friction coefficient, flow factor) properties were determined to find an optimum ratio of the glidant. Simultaneously, the particle size data were obtained using a low-angle laser light scattering (LALLS) system and scanning electron microscopy was performed in order to examine the relationship between the rheological properties and the inner structure of the materials. The optimum of flowability for the mixture composition was found, to correspond to empirical findings known from general literature. In addition the mechanism of colloidal silicone dioxide action to improve flowability was suggested and the hypothesis was confirmed by independent test. New findings represent a progress towards future application of determining the optimum concentration of glidant from the basic characteristics of the powder in the pharmaceutical research and development.


Subject(s)
Colloids/chemistry , Excipients/chemistry , Pharmaceutical Preparations/chemistry , Rheology , Silicon Dioxide/chemistry , Cellulose/chemistry , Microscopy, Electron, Scanning , Powders , Starch/chemistry
17.
Pharm Dev Technol ; 18(1): 274-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23033903

ABSTRACT

The work was aimed at the evaluation of a cleanliness of pharmaceutical equipments after the end of the production and subsequent cleaning process. The influence of a dirty-hold time, a time interval between the end of the production period and the beginning of the cleaning process on its efficiency and the cleanliness of the equipment has been studied. The evaluation was performed for commercial tablet antihypertensive formulation with API losartan potassium. Sampling was carried out by a wet-swabbing method from the equipments and consequently obtained samples were analytically evaluated using HPLC. In the production of the concerned pharmaceutical, it has been found that the cleaning process is properly designed and validated. Despite the concentration of losartan in swabs from the equipment was in all cases within the limits of acceptance criteria, the effect of the dirty-hold time was proved. In the equipments with long hold-time period, the monitored substance was found in substantially higher concentrations.


Subject(s)
Drug Compounding/instrumentation , Drug Industry/instrumentation , Equipment Contamination/prevention & control , Losartan/chemistry , Antihypertensive Agents/chemistry , Chromatography, High Pressure Liquid , Drug Compounding/standards , Drug Industry/standards , Tablets , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...