Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37242032

ABSTRACT

We theoretically analyze phonon-assisted tunneling transport in a quantum dot side connected to a Majorana bound state in a topological superconducting nanowire. We investigate the behavior of the current through the dot, for a range of experimentally relevant parameters, in the presence of one long-wave optical phonon mode. We consider the current-gate voltage, the current-bias voltage and the current-dot-Majorana coupling characteristics under the influence of the electron-phonon coupling. In the absence of electron-phonon interaction, the Majorana bound states suppress the current when the gate voltage matches the Fermi level, but the increase in the bias voltage counteracts this effect. In the presence of electron-phonon coupling, the current behaves similarly as a function of the renormalized gate voltage. As an added feature at large bias voltages, it presents a dip or a plateau, depending on the size of the dot-Majorana coupling. Lastly, we show that the currents are most sensitive to, and depend non-trivially on the parameters of the Majorana circuit element, in the regime of low temperatures combined with low voltages. Our results provide insights into the complex physics of quantum dot devices used to probe Majorana bound states.

2.
PLoS One ; 10(4): e0125142, 2015.
Article in English | MEDLINE | ID: mdl-25923789

ABSTRACT

We propose a novel hybrid single-electron device for reprogrammable low-power logic operations, the magnetic single-electron transistor (MSET). The device consists of an aluminium single-electron transistor with a GaMnAs magnetic back-gate. Changing between different logic gate functions is realized by reorienting the magnetic moments of the magnetic layer, which induces a voltage shift on the Coulomb blockade oscillations of the MSET. We show that we can arbitrarily reprogram the function of the device from an n-type SET for in-plane magnetization of the GaMnAs layer to p-type SET for out-of-plane magnetization orientation. Moreover, we demonstrate a set of reprogrammable Boolean gates and its logical complement at the single device level. Finally, we propose two sets of reconfigurable binary gates using combinations of two MSETs in a pull-down network.


Subject(s)
Magnetic Fields , Models, Theoretical , Transistors, Electronic
3.
Science ; 330(6012): 1801-4, 2010 Dec 24.
Article in English | MEDLINE | ID: mdl-21205664

ABSTRACT

The field of semiconductor spintronics explores spin-related quantum relativistic phenomena in solid-state systems. Spin transistors and spin Hall effects have been two separate leading directions of research in this field. We have combined the two directions by realizing an all-semiconductor spin Hall effect transistor. The device uses diffusive transport and operates without electrical current in the active part of the transistor. We demonstrate a spin AND logic function in a semiconductor channel with two gates. Our study shows the utility of the spin Hall effect in a microelectronic device geometry, realizes the spin transistor with electrical detection directly along the gated semiconductor channel, and provides an experimental tool for exploring spin Hall and spin precession phenomena in an electrically tunable semiconductor layer.

4.
Phys Rev Lett ; 101(3): 036401, 2008 Jul 18.
Article in English | MEDLINE | ID: mdl-18764268

ABSTRACT

Torsional oscillations of a freestanding semiconductor beam are shown to cause spin-dependent oscillating potentials that spin polarize an applied charge current in the presence of intentional or disorder scattering potentials. We propose several realizations of mechanical spin generators and manipulators based on this piezospintronic effect.

5.
Phys Rev Lett ; 95(4): 046601, 2005 Jul 22.
Article in English | MEDLINE | ID: mdl-16090829

ABSTRACT

We demonstrate that the flow of a longitudinal unpolarized current through a ballistic two-dimensional electron gas with Rashba spin-orbit coupling will induce a nonequilibrium spin accumulation which has opposite signs for the two lateral edges and is, therefore, the principal observable signature of the spin Hall effect in two-probe semiconductor nanostructures. The magnitude of its out-of-plane component is gradually diminished by static disorder, while it can be enhanced by an in-plane transverse magnetic field. Moreover, our prediction of the longitudinal component of the spin Hall accumulation, which is insensitive to the reversal of the bias voltage, offers direct evidence to differentiate experimentally between the extrinsic, intrinsic, and mesoscopic spin Hall mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...