Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Mater ; 16(5)2021 07 27.
Article in English | MEDLINE | ID: mdl-34265757

ABSTRACT

Magnetic 45S5 bioactive glass (BG) based scaffolds covered with iron-loaded hydroxyapatite (Fe-HA-BG) nanoparticles were obtained and its cytotoxicity investigated. Fe-HA nanoparticles were synthesized by a wet chemical method involving the simultaneous addition of Fe2+/Fe3+ions. BG based scaffolds were prepared by the foam replica procedure and covered with Fe-HA by dip-coating. Fe-HA-BG magnetic saturation values of 0.049 emu g-1and a very low remanent magnetization of 0.01 emu g-1were observed. The mineralization assay in simulated body fluid following Kokubo's protocol indicated that Fe-HA-BG scaffolds exhibited improved hydroxyapatite formation in comparison to uncoated scaffolds at shorter immersion times. The biocompatibility of the materialin vitrowas assessed using human osteoblast-like MG-63 cell cultures and mouse bone marrow-derived stroma cell line ST-2. Overall, the results herein discussed suggest that magnetic Fe-HA coatings seem to enhance the biological performance of 45S5 BG based scaffolds. Thus, this magnetic Fe-HA coated scaffold is an interesting system for bone tissue engineering applications and warrant further investigation.


Subject(s)
Ceramics/chemistry , Durapatite , Glass/chemistry , Magnetite Nanoparticles/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Biomineralization/drug effects , Cell Line , Durapatite/chemistry , Durapatite/pharmacology , Humans , Mesenchymal Stem Cells/drug effects , Mice , Osteoblasts/drug effects
2.
Langmuir ; 32(5): 1201-13, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26751761

ABSTRACT

Biomedical magnetic colloids commonly used in magnetic hyperthermia experiments often display a bidisperse structure, i.e., are composed of stable nanoclusters coexisting with well-dispersed nanoparticles. However, the influence of nanoclusters in the optimization of colloids for heat dissipation is usually excluded. In this work, bidisperse colloids are used to analyze the effect of nanoclustering and long-range magnetic dipolar interaction on the magnetic hyperthermia efficiency. Two kinds of colloids, composed of magnetite cores with mean sizes of around 10 and 18 nm, coated with oleic acid and dispersed in hexane, and coated with meso-2,3-dimercaptosuccinic acid and dispersed in water, were analyzed. Small-angle X-ray scattering was applied to thoroughly characterize nanoparticle structuring. We proved that the magnetic hyperthermia performances of nanoclusters and single nanoparticles are distinctive. Nanoclustering acts to reduce the specific heating efficiency whereas a peak against concentration appears for the well-dispersed component. Our experiments show that the heating efficiency of a magnetic colloid can increase or decrease when dipolar interactions increase and that the colloid concentration, i.e., dipolar interaction, can be used to improve magnetic hyperthermia. We have proven that the power dissipated by an ensemble of dispersed magnetic nanoparticles becomes a nonextensive property as a direct consequence of the long-range nature of dipolar interactions. This knowledge is a key point in selecting the correct dose that has to be injected to achieve the desired outcome in intracellular magnetic hyperthermia therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...