Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fam Cancer ; 22(4): 481-486, 2023 10.
Article in English | MEDLINE | ID: mdl-37316640

ABSTRACT

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is a rare, autosomal dominant tumor predisposition syndrome characterized by variable development of multiple skin and uterus leiomyomas and aggressive forms of renal cell carcinoma (RCC). Mutations in fumarate hydratase (FH), one of the proteins in homologous recombination repair, precede the development of HLRCC with high penetrance. Considering the risk of early metastasis of RCC, FH has been included in mutation screening panels. The identification of a pathogenic FH variant guides the screening for tumors in the carriers. However, variants of uncertain significance (VUS) are frequent findings, limiting the clinical value of the mutation screening. Here, we describe the associated phenotype and an in-depth, multi-step Bioinformatic evaluation of the germline FH c.199T > G (p.Tyr67 > Asp) variant segregated in an HLRCC family. Evidence for FH c.199T > G; (p.Tyr67Asp) pathogenicity includes the variant segregation with the disease in three affected family members, its absence in populational databases, and the deep evolutionary conservation of the Tyr67 residue. At the protein level, this residue substitution causes the loss of molecular bonds and ionic interactions, affecting molecular dynamics and protein stability. Considering ACMG/AMP criteria, we propose the reclassification of the FH c.199T > G; (p.Tyr67Asp) variant to "likely pathogenic". In addition, the in-depth, in silico approach used here allowed us to understand how and why FH c.199T > G; (p.Tyr67Asp) could cause HLRCC. This could help in clinical management decisions concerning the monitoring of unaffected family members having this variant.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Leiomyomatosis , Neoplastic Syndromes, Hereditary , Skin Neoplasms , Uterine Neoplasms , Female , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Fumarate Hydratase/genetics , Kidney Neoplasms/genetics , Leiomyomatosis/genetics , Leiomyomatosis/pathology , Neoplastic Syndromes, Hereditary/diagnosis , Skin Neoplasms/pathology , Uterine Neoplasms/pathology
2.
J Anim Breed Genet ; 140(5): 532-548, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37186480

ABSTRACT

Individual variation in milk fatty acid (FA) composition has been partially attributed to stearoyl-CoA desaturase 1 (SCD1) gene polymorphisms in taurine breeds, but much less is known for Zebu breeds. This study investigated the phenotypic variation in milk FA composition, and the influence of SCD1 variants on this trait and on milk fat desaturase indices (DI) in Gir cows. The functional impact of SCD1 variants was predicted using bioinformatics tools. Milk and blood samples were collected from 312 cows distributed in 10 herds from five states of Brazil. SCD1 variants were identified through target sequencing, and milk FA composition was determined by gas chromatography. Phenotypic variation in milk FA composition fell within the range reported for taurine breeds, with SCD18 index showing the lowest variation among the DI. Fourteen SCD1 variants were identified, six of which not previously described. Regarding the A293V polymorphism, all cows were homozygous for the C allele (coding for alanine), whereas all genotypes were detected for the second SNP affecting the 293 codon (G > A), with compelling evidence for functional effects. Significant associations (based on raw p-values) were found between this SNP and C12:0, cis-9, trans-11 CLA and short-chain FA, and between another SNP (rs523411937) and C15:0 and odd-chain linear FA. A new SNP on Chr26:21277069 was associated with trans-11 C18:1, cis-9, trans-11 CLA, C18:3 n-3 and n-3 FA. These findings indicate that SCD1 polymorphisms also contributes to the phenotypic variation in milk FA composition of Gir cows, with potential use in their breeding programmes.


Subject(s)
Fatty Acids , Milk , Female , Cattle/genetics , Animals , Stearoyl-CoA Desaturase/genetics , Polymorphism, Genetic , Biological Variation, Population
SELECTION OF CITATIONS
SEARCH DETAIL
...