Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Cells ; 12(11)2023 05 24.
Article in English | MEDLINE | ID: mdl-37296588

ABSTRACT

Primary ciliary dyskinesia (PCD) is a rare heterogenic genetic disorder associated with perturbed biogenesis or function of motile cilia. Motile cilia dysfunction results in diminished mucociliary clearance (MCC) of pathogens in the respiratory tract and chronic airway inflammation and infections successively causing progressive lung damage. Current approaches to treat PCD are symptomatic, only, indicating an urgent need for curative therapeutic options. Here, we developed an in vitro model for PCD based on human induced pluripotent stem cell (hiPSC)-derived airway epithelium in Air-Liquid-Interface cultures. Applying transmission electron microscopy, immunofluorescence staining, ciliary beat frequency, and mucociliary transport measurements, we could demonstrate that ciliated respiratory epithelia cells derived from two PCD patient-specific hiPSC lines carrying mutations in DNAH5 and NME5, respectively, recapitulate the respective diseased phenotype on a molecular, structural and functional level.


Subject(s)
Ciliary Motility Disorders , Induced Pluripotent Stem Cells , Humans , Respiratory System , Epithelium , Ciliary Motility Disorders/genetics , Phenotype , NM23 Nucleoside Diphosphate Kinases
2.
Micromachines (Basel) ; 12(8)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34442603

ABSTRACT

In order to provide an alternative treatment option to lung transplantation for patients with end-stage lung disease, we aim for the development of an implantable biohybrid lung (BHL), based on hollow fiber membrane (HFM) technology used in extracorporeal membrane oxygenators. Complete hemocompatibility of all blood contacting surfaces is crucial for long-lasting BHL durability and can be achieved by their endothelialization. Autologous endothelial cells (ECs) would be the ideal cell source, but their limited proliferation potential excludes them for this purpose. As induced pluripotent stem cell-derived ECs enable the generation of a large number of ECs, we assessed and compared their capacity to form a viable and confluent monolayer on HFM, while indicating physiologic EC-specific anti-thrombogenic and anti-inflammatory properties. ECs were generated from three different human iPSC lines, and seeded onto fibronectin-coated poly-4-methyl-1-pentene (PMP) HFM. Following phenotypical characterization, ECs were analyzed for their thrombogenic and inflammatory behavior with or without TNFα induction, using FACS and qRT-PCR. Complementary, leukocyte- and platelet adhesion assays were carried out. The capacity of the iPSC-ECs to reendothelialize cell-free monolayer areas was assessed in a scratch assay. ECs sourced from umbilical cord blood (hCBECs) were used as control. iPSC-derived ECs formed confluent monolayers on the HFM and showed the typical EC-phenotype by expression of VE-cadherin and collagen-IV. A low protein and gene expression level of E-selectin and tissue factor was detected for all iPSC-ECs and the hCBECs, while a strong upregulation of these markers was noted upon stimulation with TNFα. This was in line with the physiological and strong induction of leukocyte adhesion detected after treatment with TNFα, iPSC-EC and hCBEC monolayers were capable of reducing thrombocyte adhesion and repopulating scratched areas. iPSCs offer the possibility to provide patient-specific ECs in abundant numbers needed to cover all blood contacting surfaces of the BHL with a viable, non-thrombogenic and non-inflammatory monolayer. iPSC-EC clones can differ in terms of their reendothelialization rate, and pro-inflammatory response. However, a less profound inflammatory response may even be advantageous for BHL application. With the proven ability of the seeded iPSC-ECs to reduce thrombocyte adhesion, we expect that thrombotic events that could lead to BHL occlusion can be avoided, and thus, justifies further studies on enabling BHL long-term application.

3.
Stem Cell Reports ; 12(6): 1389-1403, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31080112

ABSTRACT

Organotypic culture systems from disease-specific induced pluripotent stem cells (iPSCs) exhibit obvious advantages compared with immortalized cell lines and primary cell cultures, but implementation of iPSC-based high-throughput (HT) assays is still technically challenging. Here, we demonstrate the development and conduction of an organotypic HT Cl-/I- exchange assay using cystic fibrosis (CF) disease-specific iPSCs. The introduction of a halide-sensitive YFP variant enabled automated quantitative measurement of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) function in iPSC-derived intestinal epithelia. CFTR function was partially rescued by treatment with VX-770 and VX-809, and seamless gene correction of the p.Phe508del mutation resulted in full restoration of CFTR function. The identification of a series of validated primary hits that improve the function of p.Phe508del CFTR from a library of ∼42,500 chemical compounds demonstrates that the advantages of complex iPSC-derived culture systems for disease modeling can also be utilized for drug screening in a true HT format.


Subject(s)
Aminophenols/pharmacology , Aminopyridines/pharmacology , Benzodioxoles/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Epithelial Cells , Genetic Engineering , Induced Pluripotent Stem Cells , Quinolones/pharmacology , Amino Acid Sequence , Cell Line , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Drug Evaluation, Preclinical , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL