Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Eng ; 13: 59, 2019.
Article in English | MEDLINE | ID: mdl-31297150

ABSTRACT

BACKGROUND: The production of recombinant proteins in mammalian cell lines is one of the most important areas in biopharmaceutical industry. Viral transcriptional promoters are widely used to express recombinant proteins in mammalian cell lines. However, these promoters are susceptible to silencing, thus limiting protein productivity. Some CpG islands can avoid the silencing of housekeeping genes; for that reason, they have been used to increase the production of recombinant genes in cells of animal origin. In this study, we evaluated the CpG island of the promoter region of the ß-actin gene of Cricetulus griseous (Chinese hamster), associated to the Cytomegalovirus (CMV) promoter, to increase recombinant antibodies production in Chinese Hamster Ovary (CHO) cells. RESULTS: We focused on the non-coding region of CpG island, which we called RegCG. RegCG behaved as a promoter, whose transcriptional activity was mainly commanded by the CAAT and CArG boxes of the proximal promoter. However, the transcription started mainly at the intronic region before the proximal transcription start site. While the CMV promoter was initially more powerful than RegCG, the latter promoter was more resistant to silencing than the CMV promoter in stable cell lines, and its activity was improved when combined with the CMV promoter. Thereby, the chimeric promoter was able to maintain the expression of recombinant antibodies in stable clones for 40 days at an average level 4 times higher than the CMV promoter. Finally, the chimeric promoter showed compatibility with a genetic amplification system by induction with methotrexate in cells deficient in the dihydrofolate reductase gene. CONCLUSIONS: We have generated an efficient synthetic hybrid transcription promoter through the combination of RegCG with CMV, which, in stable cell lines, shows greater activity than when both promoters are used separately. Our chimeric promoter is compatible with a genetic amplification system in CHO DG44 cells and makes possible the generation of stable cell lines with high production of recombinant antibodies. We propose that this promoter can be a good alternative for the generation of clones expressing high amount of recombinant proteins, essential for industrial applications.

2.
Biochemistry ; 43(5): 1302-8, 2004 Feb 10.
Article in English | MEDLINE | ID: mdl-14756566

ABSTRACT

An isolated ribonuclease H domain of HIV-1 reverse transcriptase is capable of specifically removing the tRNA primer within an oligonucleotide mimic. The determinants for substrate specificity are located in a region within the terminal octanucleotide of the acceptor stem of the tRNA. Recognition of the substrate by HIV-1 RNase H was analyzed by the introduction of a cross-linking reagent directed toward lysines on the thymine residue complementary to the scissile bond, facing the major groove of the DNA-RNA:DNA substrate. Cross-linking of the modified substrate to RNase H required the presence of Mn(2+). The Mn(2+) titration of cross-linking paralleled the Mn(2+) requirement for activity. Modified substrate quenched with glycine prior to binding of substrate was efficiently cleaved, whereas the RNA within the cross-linked product was intact. Tryptic digestion of the isolated RNase H-nucleic acid covalent complex revealed a main cross-linked peptide whose N-terminal peptide sequence is VVTLTDTTNQ, indicating that the cross-linked lysine corresponds to Lys476. Cross-linking to K476 was confirmed by analysis of K476C RNase H. Mutation of K476C disrupted the chemical cross-linking while maintaining activity. On the basis of the size of the cross-linker arm, the results indicate that K476 is in closer proximity to the tRNA mimic substrate within the isolated RNase H domain than observed for the RNase H-resistant polypurine tract (PPT) substrate within the HIV-1 RT.


Subject(s)
Cross-Linking Reagents/chemistry , DNA, Viral/chemistry , Deoxyuridine/analogs & derivatives , HIV Reverse Transcriptase/chemistry , Lysine/chemistry , RNA, Viral/chemistry , Ribonuclease H/chemistry , Binding, Competitive , Catalysis , DNA, Viral/chemical synthesis , Deoxyuridine/chemistry , Hydrolysis , Kinetics , Manganese/chemistry , Organophosphorus Compounds/chemistry , Peptide Fragments/chemistry , Peptide Fragments/isolation & purification , Protein Structure, Tertiary , RNA, Viral/chemical synthesis , Ribonuclease H/isolation & purification , Substrate Specificity , Succinimides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...