Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Reports ; 13(6): 1126-1141, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31813827

ABSTRACT

Induced pluripotent stem cells (iPSC) derived from healthy individuals are important controls for disease-modeling studies. Here we apply precision health to create a high-quality resource of control iPSCs. Footprint-free lines were reprogrammed from four volunteers of the Personal Genome Project Canada (PGPC). Multilineage-directed differentiation efficiently produced functional cortical neurons, cardiomyocytes and hepatocytes. Pilot users demonstrated versatility by generating kidney organoids, T lymphocytes, and sensory neurons. A frameshift knockout was introduced into MYBPC3 and these cardiomyocytes exhibited the expected hypertrophic phenotype. Whole-genome sequencing-based annotation of PGPC lines revealed on average 20 coding variants. Importantly, nearly all annotated PGPC and HipSci lines harbored at least one pre-existing or acquired variant with cardiac, neurological, or other disease associations. Overall, PGPC lines were efficiently differentiated by multiple users into cells from six tissues for disease modeling, and variant-preferred healthy control lines were identified for specific disease settings.


Subject(s)
Cell Differentiation , Cell Lineage , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , CRISPR-Cas Systems , Cell Self Renewal , Cell Separation , Ectoderm/cytology , Ectoderm/metabolism , Gene Editing , Humans , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Neurons/cytology , Neurons/metabolism , Organoids , Phenotype , T-Lymphocytes/metabolism , Whole Genome Sequencing
2.
Nat Commun ; 8: 14003, 2017 01 13.
Article in English | MEDLINE | ID: mdl-28084302

ABSTRACT

T-cell proliferation is regulated by ubiquitination but the underlying molecular mechanism remains obscure. Here we report that Lys-48-linked ubiquitination of the transcription factor KLF4 mediated by the E3 ligase Mule promotes T-cell entry into S phase. Mule is elevated in T cells upon TCR engagement, and Mule deficiency in T cells blocks proliferation because KLF4 accumulates and drives upregulation of its transcriptional targets E2F2 and the cyclin-dependent kinase inhibitors p21 and p27. T-cell-specific Mule knockout (TMKO) mice develop exacerbated experimental autoimmune encephalomyelitis (EAE), show impaired generation of antigen-specific CD8+ T cells with reduced cytokine production, and fail to clear LCMV infections. Thus, Mule-mediated ubiquitination of the novel substrate KLF4 regulates T-cell proliferation, autoimmunity and antiviral immune responses in vivo.


Subject(s)
Cell Proliferation , Kruppel-Like Transcription Factors/chemistry , Kruppel-Like Transcription Factors/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/enzymology , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Amino Acid Motifs , Animals , Female , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/immunology , Lymphocytic Choriomeningitis/genetics , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/physiopathology , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination
3.
Blood ; 128(7): 934-47, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27297795

ABSTRACT

Novel agents such as the Bcl-2 inhibitor venetoclax (ABT-199) are changing treatment paradigms for chronic lymphocytic leukemia (CLL) but important problems remain. Although some patients exhibit deep and durable responses to venetoclax as a single agent, other patients harbor subpopulations of resistant leukemia cells that mediate disease recurrence. One hypothesis for the origin of resistance to venetoclax is by kinase-mediated survival signals encountered in proliferation centers that may be unique for individual patients. An in vitro microenvironment model was developed with primary CLL cells that could be incorporated into an automated high-content microscopy-based screen of kinase inhibitors (KIs) to identify agents that may improve venetoclax therapy in a personalized manner. Marked interpatient variability was noted for which KIs were effective; nevertheless, sunitinib was identified as the most common clinically available KI effective in overcoming venetoclax resistance. Examination of the underlying mechanisms indicated that venetoclax resistance may be induced by microenvironmental signals that upregulate antiapoptotic Bcl-xl, Mcl-1, and A1, which can be counteracted more efficiently by sunitinib than by ibrutinib or idelalisib. Although patient-specific drug responses are common, for many patients, combination therapy with sunitinib may significantly improve the therapeutic efficacy of venetoclax.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Drug Evaluation, Preclinical , Drug Resistance, Neoplasm/drug effects , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Protein Kinase Inhibitors/analysis , Protein Kinase Inhibitors/therapeutic use , Sulfonamides/therapeutic use , Adenine/analogs & derivatives , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cellular Microenvironment/drug effects , Dose-Response Relationship, Drug , Humans , Imaging, Three-Dimensional , Indoles/pharmacology , Mutation/genetics , Piperidines , Protein Kinase Inhibitors/pharmacology , Purines/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Quinazolinones/pharmacology , Reproducibility of Results , Signal Transduction/drug effects , Stromal Cells/drug effects , Stromal Cells/pathology , Sulfonamides/pharmacology , Sunitinib , Up-Regulation/drug effects , bcl-X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...