Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 26(5): e16624, 2024 May.
Article in English | MEDLINE | ID: mdl-38757353

ABSTRACT

Laminarin, a ß(1,3)-glucan, serves as a storage polysaccharide in marine microalgae such as diatoms. Its abundance, water solubility and simple structure make it an appealing substrate for marine bacteria. Consequently, many marine bacteria have evolved strategies to scavenge and decompose laminarin, employing carbohydrate-binding modules (CBMs) as crucial components. In this study, we characterized two previously unassigned domains as laminarin-binding CBMs in multimodular proteins from the marine bacterium Christiangramia forsetii KT0803T, thereby introducing the new laminarin-binding CBM families CBM102 and CBM103. We identified four CBM102s in a surface glycan-binding protein (SGBP) and a single CBM103 linked to a glycoside hydrolase module from family 16 (GH16_3). Our analysis revealed that both modular proteins have an elongated shape, with GH16_3 exhibiting greater flexibility than SGBP. This flexibility may aid in the recognition and/or degradation of laminarin, while the constraints in SGBP could facilitate the docking of laminarin onto the bacterial surface. Exploration of bacterial metagenome-assembled genomes (MAGs) from phytoplankton blooms in the North Sea showed that both laminarin-binding CBM families are widespread among marine Bacteroidota. The high protein abundance of CBM102- and CBM103-containing proteins during phytoplankton blooms further emphasizes their significance in marine laminarin utilization.


Subject(s)
Bacterial Proteins , Glucans , Phytoplankton , Glucans/metabolism , Phytoplankton/metabolism , Phytoplankton/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacteroidetes/metabolism , Bacteroidetes/genetics , Eutrophication , Diatoms/metabolism , Diatoms/genetics , Receptors, Cell Surface
2.
Nat Commun ; 15(1): 4048, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744821

ABSTRACT

Phytoplankton blooms provoke bacterioplankton blooms, from which bacterial biomass (necromass) is released via increased zooplankton grazing and viral lysis. While bacterial consumption of algal biomass during blooms is well-studied, little is known about the concurrent recycling of these substantial amounts of bacterial necromass. We demonstrate that bacterial biomass, such as bacterial alpha-glucan storage polysaccharides, generated from the consumption of algal organic matter, is reused and thus itself a major bacterial carbon source in vitro and during a diatom-dominated bloom. We highlight conserved enzymes and binding proteins of dominant bloom-responder clades that are presumably involved in the recycling of bacterial alpha-glucan by members of the bacterial community. We furthermore demonstrate that the corresponding protein machineries can be specifically induced by extracted alpha-glucan-rich bacterial polysaccharide extracts. This recycling of bacterial necromass likely constitutes a large-scale intra-population energy conservation mechanism that keeps substantial amounts of carbon in a dedicated part of the microbial loop.


Subject(s)
Bacteria , Carbon Cycle , Glucans , Glucans/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Phytoplankton/metabolism , Biomass , Diatoms/metabolism , Eutrophication , Carbon/metabolism , Zooplankton/metabolism , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/chemistry , Bacterial Proteins/metabolism
3.
ISME J ; 17(2): 276-285, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36411326

ABSTRACT

The polysaccharide ß-mannan, which is common in terrestrial plants but unknown in microalgae, was recently detected during diatom blooms. We identified a ß-mannan polysaccharide utilization locus (PUL) in the genome of the marine flavobacterium Muricauda sp. MAR_2010_75. Proteomics showed ß-mannan induced translation of 22 proteins encoded within the PUL. Biochemical and structural analyses deduced the enzymatic cascade for ß-mannan utilization. A conserved GH26 ß-mannanase with endo-activity depolymerized the ß-mannan. Consistent with the biochemistry, X-ray crystallography showed the typical TIM-barrel fold of related enzymes found in terrestrial ß-mannan degraders. Structural and biochemical analyses of a second GH26 allowed the prediction of an exo-activity on shorter manno-gluco oligosaccharides. Further analysis demonstrated exo-α-1,6-galactosidase- and endo-ß-1,4-glucanase activity of the PUL-encoded GH27 and GH5_26, respectively, indicating the target substrate is a galactoglucomannan. Epitope deletion assays with mannanases as analytic tools indicate the presence of ß-mannan in the diatoms Coscinodiscus wailesii and Chaetoceros affinis. Mannanases from the PUL were active on diatom ß-mannan and polysaccharide extracts sampled during a microalgal bloom at the North Sea. Together these results demonstrate that marine microorganisms use a conserved enzymatic cascade to degrade ß-mannans of marine and terrestrial origin and that this metabolic pathway plays a role in marine carbon cycling.


Subject(s)
Diatoms , Mannans , Mannans/metabolism , Diatoms/genetics , Diatoms/metabolism , Bacteroidetes/genetics , beta-Mannosidase/genetics , beta-Mannosidase/chemistry , beta-Mannosidase/metabolism , Polysaccharides/metabolism , Oligosaccharides/metabolism
4.
Microb Cell Fact ; 21(1): 207, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36217189

ABSTRACT

BACKGROUND: Marine algae are responsible for half of the global primary production, converting carbon dioxide into organic compounds like carbohydrates. Particularly in eutrophic waters, they can grow into massive algal blooms. This polysaccharide rich biomass represents a cheap and abundant renewable carbon source. In nature, the diverse group of polysaccharides is decomposed by highly specialized microbial catabolic systems. We elucidated the complete degradation pathway of the green algae-specific polysaccharide ulvan in previous studies using a toolbox of enzymes discovered in the marine flavobacterium Formosa agariphila and recombinantly expressed in Escherichia coli. RESULTS: In this study we show that ulvan from algal biomass can be used as feedstock for a biotechnological production strain using recombinantly expressed carbohydrate-active enzymes. We demonstrate that Bacillus licheniformis is able to grow on ulvan-derived xylose-containing oligosaccharides. Comparative growth experiments with different ulvan hydrolysates and physiological proteogenomic analyses indicated that analogues of the F. agariphila ulvan lyase and an unsaturated ß-glucuronylhydrolase are missing in B. licheniformis. We reveal that the heterologous expression of these two marine enzymes in B. licheniformis enables an efficient conversion of the algal polysaccharide ulvan as carbon and energy source. CONCLUSION: Our data demonstrate the physiological capability of the industrially relevant bacterium B. licheniformis to grow on ulvan. We present a metabolic engineering strategy to enable ulvan-based biorefinery processes using this bacterial cell factory. With this study, we provide a stepping stone for the development of future bioprocesses with Bacillus using the abundant marine renewable carbon source ulvan.


Subject(s)
Bacillus licheniformis , Bacillus licheniformis/genetics , Bacillus licheniformis/metabolism , Carbon Dioxide , Metabolic Engineering , Oligosaccharides , Polysaccharides/metabolism , Xylose
6.
Environ Microbiol ; 23(6): 3149-3163, 2021 06.
Article in English | MEDLINE | ID: mdl-33876569

ABSTRACT

Outer membrane extensions are common in many marine bacteria. However, the function of these surface enlargements or extracellular compartments is poorly understood. Using a combined approach of microscopy and subproteome analyses, we therefore examined Pseudoalteromonas distincta ANT/505, an Antarctic polysaccharide degrading gamma-proteobacterium. P. distincta produced outer membrane vesicles (MV) and vesicle chains (VC) on polysaccharide and non-polysaccharide carbon sources during the exponential and stationary growth phase. Surface structures of carbohydrate-grown cells were equipped with increased levels of highly substrate-specific proteins. At the same time, proteins encoded in all other polysaccharide degradation-related genomic regions were also detected in MV and VC samples under all growth conditions, indicating a basal expression. In addition, two alkaline phosphatases were highly abundant under non-limiting phosphate conditions. Surface structures may thus allow rapid sensing and fast responses in nutritionally deprived environments. It may also facilitate efficient carbohydrate processing and reduce loss of substrates and enzymes by diffusion as important adaptions to the aquatic ecosystem.


Subject(s)
Ecosystem , Pseudoalteromonas , Antarctic Regions , Polysaccharides
7.
Appl Microbiol Biotechnol ; 104(8): 3569-3583, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32125477

ABSTRACT

Comparative analyses determined the relationship between the structure of bisphenol A (BPA) as well as of seven bisphenol analogues (bisphenol B (BPB), bisphenol C (BPC), bisphenol E (BPE), bisphenol F (BPF), bisphenol Z (BPZ), bisphenol AP (BPAP), bisphenol PH (BPPH)) and their biotransformability by the biphenyl-degrading bacterium Cupriavidus basilensis SBUG 290. All bisphenols were substrates for bacterial transformation with conversion rates ranging from 6 to 98% within 216 h and 36 different metabolites were characterized. Transformation by biphenyl-grown cells comprised four different pathways: (a) formation of ortho-hydroxylated bisphenols, hydroxylating either one or both phenols of the compounds; (b) ring fission; (c) transamination followed by acetylation or dimerization; and (d) oxidation of ring substituents, such as methyl groups and aromatic ring systems, present on the 3-position. However, the microbial attack of bisphenols by C. basilensis was limited to the phenol rings and its substituents, while substituents on the carbon bridge connecting the rings were not oxidized. All bisphenol analogues with modifications at the carbon bridge could be oxidized up to ring cleavage, while substituents at the 3-position of the phenol ring other than hydroxyl groups did not allow this reaction. Replacing one methyl group at the carbon bridge of BPA by a hydrophobic aromatic or alicyclic ring system inhibited both dimerization and transamination followed by acetylation. While most of the bisphenol analogues exhibited estrogenic activity, four biotransformation products tested were not estrogenically active.


Subject(s)
Benzhydryl Compounds/metabolism , Biotransformation , Cupriavidus/metabolism , Benzhydryl Compounds/classification , Cyclohexanes/metabolism , Phenols/metabolism , Soil Microbiology , Structure-Activity Relationship , Tandem Mass Spectrometry
8.
Nat Chem Biol ; 15(8): 803-812, 2019 08.
Article in English | MEDLINE | ID: mdl-31285597

ABSTRACT

Marine seaweeds increasingly grow into extensive algal blooms, which are detrimental to coastal ecosystems, tourism and aquaculture. However, algal biomass is also emerging as a sustainable raw material for the bioeconomy. The potential exploitation of algae is hindered by our limited knowledge of the microbial pathways-and hence the distinct biochemical functions of the enzymes involved-that convert algal polysaccharides into oligo- and monosaccharides. Understanding these processes would be essential, however, for applications such as the fermentation of algal biomass into bioethanol or other value-added compounds. Here, we describe the metabolic pathway that enables the marine flavobacterium Formosa agariphila to degrade ulvan, the main cell wall polysaccharide of bloom-forming Ulva species. The pathway involves 12 biochemically characterized carbohydrate-active enzymes, including two polysaccharide lyases, three sulfatases and seven glycoside hydrolases that sequentially break down ulvan into fermentable monosaccharides. This way, the enzymes turn a previously unexploited renewable into a valuable and ecologically sustainable bioresource.


Subject(s)
Flavobacteriaceae/enzymology , Polysaccharides/metabolism , Bacterial Proteins , Carbohydrate Metabolism , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Genome, Bacterial , Genomics , Models, Molecular , Polysaccharides/chemistry , Protein Conformation , Sulfatases/chemistry , Sulfatases/genetics , Sulfatases/metabolism
9.
Appl Microbiol Biotechnol ; 101(9): 3743-3758, 2017 May.
Article in English | MEDLINE | ID: mdl-28050635

ABSTRACT

The biphenyl-degrading Gram-negative bacterium Cupriavidus basilensis (formerly Ralstonia sp.) SBUG 290 uses various aromatic compounds as carbon and energy sources and has a high capacity to transform bisphenol A (BPA), which is a hormonally active substance structurally related to biphenyl. Biphenyl-grown cells initially hydroxylated BPA and converted it to four additional products by using three different transformation pathways: (a) formation of multiple hydroxylated BPA, (b) ring fission, and (c) transamination followed by acetylation or dimerization. Products of the ring fission pathway were non-toxic and all five products exhibited a significantly reduced estrogenic activity compared to BPA. Cell cultivation with phenol and especially in nutrient broth (NB) resulted in a reduced biotransformation rate and lower product quantities, and NB-grown cells did not produce all five products in detectable amounts. Thus, the question arose whether enzymes of the biphenyl degradation pathway are involved in the transformation of BPA and was addressed by proteomic analyses.


Subject(s)
Benzhydryl Compounds/metabolism , Cupriavidus/metabolism , Estrogens, Non-Steroidal/metabolism , Phenols/metabolism , Biotransformation , Carbon/metabolism , Cupriavidus/growth & development , Metabolic Networks and Pathways
SELECTION OF CITATIONS
SEARCH DETAIL
...