Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Molecules ; 27(5)2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35268664

ABSTRACT

Chemical derivatization for improving selectivity and/or sensitivity is a common practice in analytical chemistry. It is particularly attractive in flow analysis in view of its highly reproducible reagent addition(s) and controlled timing. Then, measurements without attaining the steady state, kinetic discrimination, exploitation of unstable reagents and/or products, as well as strategies compliant with Green Analytical Chemistry, have been efficiently exploited. Flow-based chemical derivatization has been accomplished by different approaches, most involving flow and manifold programming. Solid-phase reagents, novel strategies for sample insertion and reagent addition, as well as to increase sample residence time have been also exploited. However, the required alterations in flow rates and/or manifold geometry may lead to spurious signals (e.g., Schlieren effect) resulting in distorted peaks and a noisy/drifty baseline. These anomalies can be circumvented by a proper flow system design. In this review, these aspects are critically discussed mostly in relation to spectrophotometric and luminometric detection.

2.
Talanta ; 233: 122479, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34215107

ABSTRACT

Flow analysis is usually associated with repetitive assays, as all samples of a batch are generally handled in the same way. By exploiting computer-controlled devices (e.g. pumps, valves, injectors, commuters, and samplers), this scenario has been expanded, as a proper manifold dimensioning can be set for each sample. Initially, this dimensioning relied on previous information about each sample, added to the operating software prior to analysis of a given sample lot. Further, real-time decisions relying on feedback mechanisms started to be exploited for improving the analytical figures of merit, simplifying the laboratory management, and allowing real-time system optimization and fault detection. This is the essence of the expert flow analyzers, which involve manifold re-dimensioning by means of flow/manifold programming, often relying on multicommutation. The development of flow analysis from repetitive to real-time defined assays, the involved terminology, and trends on further development are highlighted in this review. Applications involve segmented and unsegmented flow analysis of agronomical, clinical, environmental, industrial, pharmaceutical, and geological samples.

3.
Talanta ; 209: 120530, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31892004

ABSTRACT

An automatic titration setup exploiting flow analysis was proposed for the evaluation of the copper complexation capacity of highly opaque substances (milk and humic substances). The binary search approach was implemented in a flow-batch analyzer, in order to add the in-line selected titrant (e.g. copper ions) volumes to the sample. When the titration end-point was surpassed, the free metal ions catalyzed the reaction of luminol with hydrogen peroxide, yielding the chemiluminescence, which was quantified even in solutions of high opacity. Accuracy was assessed through addition/recovery tests involving classical complexing species (EDTA, DTPA and DTTC), and recoveries ranged from 96% to 115%. The proposed system requires low amounts of reagents and samples (0.42 mg of luminol, 82 µg H2O2, 1.10 mL of sample) per titration run, meaning ca. 12 mL of effluent per titration, and yields precise results (5% r.s.d.) at a sampling throughput of 43 h-1.

4.
Talanta ; 206: 120185, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31514859

ABSTRACT

A parallel within the development of flow analysis and the consolidation of Talanta as one of the main journals in analytical chemistry is drawn. Influence of scientific divulgation, meeting organizations, thematic issues devoted to scientific events and Talanta awards in the recent development of flow analysis is emphasized. For didactic purposes, the discussion is focused on three 20-year periods. A scientometric overview demonstrated the consolidation of Talanta as the main journal for divulgation of recent innovations in flow analysis.

5.
Anal Chim Acta ; 1093: 75-85, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31735217

ABSTRACT

The amazing development of flow analysis has led to a loss of conceptual uniformity and to the proposals of a number of modalities, each assigned to an acronym, and this aspect may hinder further developments in the field. As any sample handling step of a flow-based analytical procedure can be accomplished in different ways, there are multiple facets associated to it. This tutorial is focused on the critical evaluation of these facets and the proposal of a novel way to present the flow analyzers, disregarding or even avoiding the need for specifying flow modalities and acronyms.

6.
An Acad Bras Cienc ; 90(1 Suppl 1): 803-824, 2018.
Article in English | MEDLINE | ID: mdl-29742208

ABSTRACT

Coupling solid-phase extraction (SPE) to flow systems has promoted a synergistic development. Whereas SPE mechanization leads to improved precision and higher sample throughput, as well as diminishes systematic errors and contamination risks, analyte concentration and separation from the sample matrix provides a remarkable impact on detectability and selectivity in flow analysis. Historical aspects, main cornerstones, tips for system design, and recent applications are critically reviewed, in the context of analyte(s) separation/concentration, sample clean-up, and release of sorbed chemical species involving both packed (e.g. mini-columns, cartridges, and disks) or fluidized (e.g. beads and magnetic materials) particles. Novel (bio)sorbents, selective synthetic materials, and stationary phases for low-pressure chromatography are also discussed. Moreover, the feasibility of SPE for sample treatment before chromatographic separation, as well as the exploitation of direct measurements on the solid phase (optosensing) are emphasized.

7.
Talanta ; 184: 325-331, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29674049

ABSTRACT

In flow analysis, solid particles (sorbents, reagents or catalysts) have been used for e.g. analyte separation/concentration, sample clean-up, speciation analysis, enzymatic assays, analysis relying on slight soluble reagents, and kinetics studies related to adsorption/release of species. The particles are usually accommodated inside packed-bed mini-columns, cartridges or disks, but this geometry may led to limited analyte/particle interaction, poor renewal of the particle surface, swelling effects, establishment of preferential pathways, and increased backpressure. These hindrances are circumvented by fluidizing the solid particles. Fluidization is a worldwide-accepted industrial process, which can be successfully implemented in flow analysis. This review emphasizes historical and conceptual aspects, as well as advantages, limitations, applications, and perspectives for future development of flow analysis relying on fluidized particles.

8.
Talanta ; 179: 15-21, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29310215

ABSTRACT

Multivariate calibration involving partial least squares was exploited in the flow-based spectrophotometric determination of molybdenum in river waters relying on the Mo(VI)-catalyzed iodide oxidation by H2O2 under acidic conditions. Two sample aliquots were simultaneously inserted into the carrier stream, and differential pumping was accountable for in-line addition of sulfuric acid to one of them. Pronounced gradients (acidity and reagent concentrations) were established along the complex sample zone formed, and the absorbance-time function was characterized by local maximum and minimum values. As these values were intrinsically more precise, they were used for implementing the PLS multivariate calibration. Mo(VI) and Fe(III) were jointly determined, and Fe(III) interference was straightforwardly circumvented. Influence of reagent concentrations, acidity, available time for reaction development, and nature of the acid was investigated, and this later parameter manifested itself as relevant for discriminating purposes. The calibration set consisted of 6.2 - 50.0µgL-1 Mo(VI) plus 0.5 - 7.0mgL-1 Fe(III) solutions. The PLS model was characterized by good prediction ability [RMSEP = 0.67µgL-1 for Mo(VI)]. The innovation was applied to spiked river waters, and analytical precision, sampling rate, recovery, detection limit and reagent consumption were estimated as 0.5 - 2.4%, 31h-1, 98-114%. 0.88µgL-1 Mo(VI), and 54.0mg KI per determination, respectively. Results were in agreement with ICP OES.

9.
An. acad. bras. ciênc ; 90(1,supl.1): 803-824, 2018. graf
Article in English | LILACS | ID: biblio-886941

ABSTRACT

ABSTRACT Coupling solid-phase extraction (SPE) to flow systems has promoted a synergistic development. Whereas SPE mechanization leads to improved precision and higher sample throughput, as well as diminishes systematic errors and contamination risks, analyte concentration and separation from the sample matrix provides a remarkable impact on detectability and selectivity in flow analysis. Historical aspects, main cornerstones, tips for system design, and recent applications are critically reviewed, in the context of analyte(s) separation/concentration, sample clean-up, and release of sorbed chemical species involving both packed (e.g. mini-columns, cartridges, and disks) or fluidized (e.g. beads and magnetic materials) particles. Novel (bio)sorbents, selective synthetic materials, and stationary phases for low-pressure chromatography are also discussed. Moreover, the feasibility of SPE for sample treatment before chromatographic separation, as well as the exploitation of direct measurements on the solid phase (optosensing) are emphasized.

10.
Talanta ; 168: 303-306, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28391858

ABSTRACT

An advanced strategy involving concentric tubes is proposed for fast and controlled heating (or cooling) of the reaction medium in flow analysis. Different temperatures are set by sequentially circulating two thermostated water streams through the outer larged bore (2.0mm i.d.) silicone tube, which acted as a water-jacket of the inner (0.8mm i.d.) PTFE tube, and directing the sample zone to flow through it. Each end of the outer tube is connected to a three-way valve that selects the stream to flow inside it. For 25-85cm tube lengths and a 12.0mLmin-1 flow rate, the time interval required for temperature attainment, and the uniformity of temperature along the tube were evaluated. For the 85-cm tube, low differences in temperatures along the coil (1.1-8.7°C) and between programmed and attained values (2.3-13.4°C) were noted within a wide range of pre-set temperatures (15-75°C). The feasibility of the innovation in flow analysis was demonstrated in a model system relying on the iodide-nitrite reaction. The strategy allows fast (15-120s) thermostating of the reaction medium in a versatile and simple way, and is especially attractive when two controlled temperatures are set during the analytical course. Potentialities and limitations of the innovation are discussed.

11.
Talanta ; 156-157: 71-78, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27260437

ABSTRACT

An automatic batchwise bioaccessibility test was proposed for on-line monitoring of readily mobile pools of ametryn and atrazine residues in agricultural soils with different physicochemical properties. A 0.01molL(-1) CaCl2 solution mimicking rainwater percolation through the soil profiles was used for the herbicide extractions. The extract aliquots were successively sampled at regular time intervals in order to investigate the extraction kinetics. For extract clean-up and retention of freely dissolved target species, 30mg of restricted-access like copolymer were used as in-line sorptive material followed by elution with methanol and on-line heart-cut injection towards a C18 silica reversed-phase monolithic column (100×4.6mm) in a liquid chromatographic system. A mathematical model emphasized that the readily available pools vs time can be in most instances described by a first-order exponential equation, thus an asymptotical value is approached. Consequently, the leaching assays can be performed without attaining chemical equilibrium. Enhancement factors and detection limits were 10.2 and 18.8, and 0.40 and 0.37mgkg(-1) for ametryn and atrazine, respectively. The automatic method features good repeatability for leaching tests (r.s.d.: 11.8-10.2% for sandy and 3.7-6.2% for clayey soil). Reliable data, demonstrated with relative recoveries in the soil leachates ranging from 86 to 104%, were achieved in less than 35min, thus avoiding the need for up to 24h as recommended by standard leaching methods.

12.
Talanta ; 158: 14-20, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27343572

ABSTRACT

A flow-based strategy involving a gas-diffusion sampling probe was proposed for evaluating the respiration rate in soils. The amount of CO2 collected after a pre-defined time interval was proportional to the free CO2 released by the soil ecosystem. The 500-mL incubation flasks typically used for soil respirometric assays were adapted and a special cover was designed for connecting a tubular gas diffusion membrane, a fan, and a septum for adding the CO2(g) standards required for calibration. The method relied on the pH-dependent absorbance variations resulting from the CO2 collection. A 1.3mmolL(-1) bromothymol blue solution (pH 7.0) acted as both acceptor and carrier streams. In order to widen the dynamical working range to 0.003-0.2mmol CO2, two analytical curves were obtained, each related to a different time interval for the CO2 collection. Kinetic curves related to CO2 release by the soil samples were straightforwardly attained. Repeatability and detection limit were estimated as 2.0% and 0.001mmol CO2 (n=10), and accuracy was assessed in relation to a recommended titrimetric procedure.


Subject(s)
Carbon Dioxide/analysis , Soil Microbiology , Automation , Diffusion , Soil/chemistry
13.
Talanta ; 158: 270-275, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27343605

ABSTRACT

An advanced oxidative process relying on the interaction of peroxymonosulphate and cobalt(II) was implemented for generating the sulphate radicals in flow analysis, in order to accomplish in-line sample preparation thus improving the spectrophotometric determination of phosphate and phosphite in liquid foliar fertilizers. To this end, a flow-batch system with a heated chamber was designed. The sample was handled twice, with and without the step of phosphite oxidation to phosphate, and the formed orthophosphate was quantified after interaction with the vanadate-molybdate reagent. Phosphite was determined as the difference in analytical signals corresponding to sample handling with and without the oxidation step. Influence of Co(II) on the peroxymonosulphate activation, reagent concentrations and added volumes, acidity, temperature and heating time were investigated like aiming at to improve analytical recovery and measurement repeatability, as well as the and system ruggedness. The 6.6-20.0mgL(-1) P2O5 standards were in-line prepared from a single stock solution. Detection limits were estimated as 0.8 and 0.1mgL(-1) for P2O5 and P-PO4. Twenty-four samples are were run per hour, and results are were in agreement with those obtained by the official procedure.


Subject(s)
Cobalt/chemistry , Fertilizers/analysis , Peroxides/chemistry , Phosphates/analysis , Phosphites/analysis , Sulfates/chemistry , Spectrophotometry/instrumentation , Spectrophotometry/methods
14.
Anal Chim Acta ; 902: 123-128, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26703261

ABSTRACT

The feasibility of implementing tracer-monitored titrations in a flow system is demonstrated. A dye tracer is used to estimate the instant sample and titrant volumetric fractions without the need for volume, mass or peak width measurements. The approach was applied to spectrophotometric flow titrations involving variations of sample and titrant flow-rates (i.e. triangle programmed technique) or concentration gradients established along the sample zone (i.e. flow injection system). Both strategies required simultaneous monitoring of two absorbing species, namely the titration indicator and the dye tracer. Mixing conditions were improved by placing a chamber with mechanical stirring in the analytical path aiming at to minimize diffusional effects. Unlike most of flow-based titrations, the innovation is considered as a true titration, as it does not require a calibration curve thus complying with IUPAC definition. As an application, acidity evaluation in vinegars involving titration with sodium hydroxide was selected. Phenolphthalein and brilliant blue FCF were used as indicator and dye tracer, respectively. Effects of sample volume, titrand/titrant concentrations and flow rates were investigated aiming at improved accuracy and precision. Results were reliable and in agreement with those obtained by a reference titration procedure.

15.
Talanta ; 143: 419-430, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26078179

ABSTRACT

In flow analysis, use of a steady and pulseless flow was considered essential for ensuring a reproducible handling of the flowing sample. To this end, peristaltic and syringe pumps have been the propelling device in the vast majority of the flow analysers. Recently, the number of applications involving pulsed flow has been increasing. Most of them refer to use of solenoid pumps, the essence of the so-called multi-pumping flow systems. This review critically discusses the characteristics, potentialities and limitations of the pulsed flow systems, emphasizing the main advantageous characteristics of the streams involved, such as high radial mass transference and good mixing of the fluids. Diverse contributions ranging from instrumentation development to analytical applications are presented.


Subject(s)
Flow Injection Analysis , Flow Injection Analysis/instrumentation , Flow Injection Analysis/methods
16.
Anal Sci ; 30(8): 833-8, 2014.
Article in English | MEDLINE | ID: mdl-25109646

ABSTRACT

In flow-based analytical procedures requiring heating, liberation of air bubbles is avoided by trapping a sample selected portion into a heated hermetic environment. The flow-through cuvette is maintained into a temperature-controlled aluminium block, thus acting as the trapping element and allowing real-time monitoring. The feasibility of the innovation was demonstrated in the spectrophotometric catalytic determination of vanadium in mineral waters. Air bubbles were not released even for temperatures as high as 95°C. The proposed system handles about 25 samples per hour, requires only 3 mg p-anisidine per determination and yields precise results (r.s.d. = 2.1%), in agreement with ICP-MS. Detection limit was evaluated (3.3 σ criterion) as 0.1 µg L(-1) V.

17.
Analyst ; 139(15): 3666-82, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24886858

ABSTRACT

The main contributions of Brazilian researchers to the field of flow analysis are reviewed, with an emphasis on historical developments, conceptual aspects, system design, and analytical applications. Contributions after the advent of flow injection analysis are highlighted. Novel approaches (e.g. zone merging, zone sampling, zone trapping, multi-site detection, and multi-commutation), flow modalities (e.g. monosegmented flow analysis, flow-batch analysis, multi-pumping flow analysis), as well as the pioneering implementation of different detection techniques (e.g. potentiometry, turbidimetry, flame atomic absorption spectrometry, inductively coupled plasma-optical emission spectrometry, and gravimetry) and analytical steps (e.g. titrations, membrane-less gas diffusion, and electrolytic dissolution) are highlighted. Strategies to improve analytical figures of merit and the use of the flow analyser as a tool for teaching purposes are also discussed. Contributions from Brazilian workers in the context of system miniaturization, "green" chemistry, analysis of complex samples, novel strategies and materials for in-line analyte separation/concentration, and proposals for expert systems are also highlighted. The large-scale analysis of samples of agronomical, environmental, industrial, and clinical relevance is emphasized.

18.
Talanta ; 113: 118-22, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23708632

ABSTRACT

A simple and rugged flow set up was designed for spectrophotometric determination of sulphide, sulphite and ethanol aiming at quality assessment of wines, control of industrial fermentation, and selection of yeast strain. The different assays involved gas diffusion through a Teflon planar membrane and were carried out after minor modifications in the manifold, namely reagent composition and total flow rate. Main figures of merit: linear analytical curves=0.50-6.0 mg L(-1)S(2-), 2.5-20.0 mg L(-1) SO3(-) and 5.0-25.0% (v/v) of ethanol; detection limits (3σ)=0.035 mg L(-1)S(2-), 0.2 mg L(-1) SO3(-) and 0.18% (v/v) of ethanol; peak height r.s.d.=2.18% for 4.03 mg L(-1)S(2-) spiked molasses, 2.21% for a 9.82 mg L(-1) SO3(-) wine and 2.07% for a typical wine (12.53% v/v of ethanol), sampling rate=15, 57 and 29 h(-1), reagent consumptions=1.9 µmol of N,N-dimethyl-p-phenylenediamine, 1.68 µg of Malachite green and 0.68 mmol Cr(VI) per determination, respectively.

19.
J Agric Food Chem ; 61(10): 2358-63, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23305150

ABSTRACT

The feasibility of using banana peel for removal of the pesticides atrazine and ametryne from river and treated waters has been demonstrated, allowing the design of an efficient, fast, and low-cost strategy for remediation of polluted waters. The conditions for removal of these pesticides in a laboratory scale were optimized as sample volume = 50 mL, banana mass = 3.0 g, stirring time = 40 min, and no pH adjustment necessary. KF(sor) values for atrazine and ametryne were evaluated as 35.8 and 54.1 µg g(-1) (µL mL(-1)) by using liquid scintillation spectrometry. Adsorption was also evaluated by LC-ESI-MS/MS. As quantification limits were 0.10 and 0.14 µg L(-1) for both pesticides, sample preconcentration was not needed. Linear analytical curves (up to 10 µg L(-1)), precise results (RSD < 4.5%), good recoveries (82.9-106.6%), and a > 90% removal efficiency were attained for both pesticides. Water samples collected near an intensively cultivated area were adequately remedied.


Subject(s)
Atrazine/chemistry , Environmental Restoration and Remediation/methods , Musa/chemistry , Triazines/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Environmental Restoration and Remediation/instrumentation , Fruit/chemistry
20.
Talanta ; 102: 53-8, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23182574

ABSTRACT

A flow system with zone merging and zone trapping in the main reactor was proposed. The sample and reagent inserted aliquots merge together and the resulting zone is directed towards a displaceable reactor inside which its most concentrated portion is trapped. After the pre-set TRAP period, the handled sample is released towards detection. A comparison with an analogous flow system exploiting zone stopping revealed the superior characteristics of sampling rate and system operation; moreover, the sample inserted volume plays little influence on sampling rate. The system was applied to the spectrophotometric determination of cobalt in pastures, and enhanced figures of merit (sampling rate=18 h(-1); peak height r.s.d.=0.7%, detection limit=0.046 µg L(-1) Co; reagent consumption=330 µg of Tiron per measurement; 98%

Subject(s)
Cobalt/analysis , Poaceae/chemistry , 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt/chemistry , Catalysis , Hydrogen Peroxide/chemistry , Indicators and Reagents/chemistry , Oxidation-Reduction , Sodium Hydroxide/chemistry , Spectrophotometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...