Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
Viruses ; 15(9)2023 08 25.
Article in English | MEDLINE | ID: mdl-37766222

ABSTRACT

The regulatory T cell master transcription factor, Forkhead box P3 (Foxp3), has been detected in cancer cells; however, its role in breast tumor pathogenesis remains controversial. Here we assessed Foxp3 tumor intrinsic effects in experimental breast cancer using a Foxp3 binder peptide (P60) that impairs Foxp3 nuclear translocation. Cisplatin upregulated Foxp3 expression in HER2+ and triple-negative breast cancer (TNBC) cells. Foxp3 inhibition with P60 enhanced chemosensitivity and reduced cell survival and migration in human and murine breast tumor cells. We also developed an adenoviral vector encoding P60 (Ad.P60) that efficiently transduced breast tumor cells, reduced cell viability and migration, and improved the cytotoxic response to cisplatin. Conditioned medium from transduced breast tumor cells contained lower levels of IL-10 and improved the activation of splenic lymphocytes. Intratumoral administration of Ad.P60 in breast-tumor-bearing mice significantly reduced tumor infiltration of Tregs, delayed tumor growth, and inhibited the development of spontaneous lung metastases. Our results suggest that Foxp3 exerts protumoral intrinsic effects in breast cancer cells and that gene-therapy-mediated blockade of Foxp3 could constitute a therapeutic strategy to improve the response of these tumors to standard treatment.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Female , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Cisplatin/pharmacology , T-Lymphocytes, Regulatory , Peptides/pharmacology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
2.
Viruses ; 15(3)2023 02 22.
Article in English | MEDLINE | ID: mdl-36992317

ABSTRACT

We aimed to assess the potential of baculoviral vectors (BV) for brain cancer gene therapy. We compared them with adenoviral vectors (AdV), which are used in neuro-oncology, but for which there is pre-existing immunity. We constructed BVs and AdVs encoding fluorescent reporter proteins and evaluated their transduction efficiency in glioma cells and astrocytes. Naïve and glioma-bearing mice were intracranially injected with BVs to assess transduction and neuropathology. Transgene expression was also assessed in the brain of BV-preimmunized mice. While the expression of BVs was weaker than AdVs in murine and human glioma cell lines, BV-mediated transgene expression in patient-derived glioma cells was similar to AdV-mediated transduction and showed strong correlation with clathrin expression, a protein that interacts with the baculovirus glycoprotein GP64, mediating BV endocytosis. BVs efficiently transduced normal and neoplastic astrocytes in vivo, without apparent neurotoxicity. BV-mediated transgene expression was stable for at least 21 days in the brain of naïve mice, but it was significantly reduced after 7 days in mice systemically preimmunized with BVs. Our findings indicate that BVs efficiently transduce glioma cells and astrocytes without apparent neurotoxicity. Since humans do not present pre-existing immunity against BVs, these vectors may constitute a valuable tool for the delivery of therapeutic genes into the brain.


Subject(s)
Baculoviridae , Brain Neoplasms , Genetic Therapy , Genetic Vectors , Glioma , Baculoviridae/genetics , Baculoviridae/immunology , Brain Neoplasms/therapy , Glioma/therapy , Animals , Mice , Cell Line, Tumor , Humans , Rats , Mice, Inbred C57BL , Male , Transduction, Genetic , Astrocytes/virology , Transgenes/genetics
3.
Vaccine ; 38(45): 6990-7001, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32951939

ABSTRACT

The most effective strategies for the control of disease in poultry are vaccination and biosecurity. Vaccines useful against pathogens affecting poultry must be safe, effective with a single dose, inexpensive, applicable by mass vaccination methods, and able to induce a protective immune response in the presence of maternal antibodies. Viral vector meet some of these characteristics and if the attenuated virus used as vector infects birds, the vaccine will have the advantage of being bivalent. Thus, viral vectors are currently a tool of choice for the development of new poultry vaccines. This review describes the main viruses used as vectors for the delivery and in vivo expression of antigens of poultry pathogens. It also presents the methodologies most frequently used to obtain recombinant viral vectors and summarizes the state-of-the-art related to vectored vaccines in poultry (some of them currently licensed), the pathogens targeted and their antigens, and the ability of these vaccines to induce an effective immune response. Finally, the review discusses the results of a few studies comparing recombinant viral vector vaccines and live-attenuated vaccines in vaccine matching challenges, and mentions strategies and future researches that can help to improve the efficacy of vectored vaccines in poultry birds.


Subject(s)
Poultry Diseases , Viral Vaccines , Viruses , Animals , Antibodies, Viral , Chickens , Poultry , Poultry Diseases/prevention & control , Vaccination , Vaccines, Synthetic/genetics
4.
J Virol ; 92(11)2018 06 01.
Article in English | MEDLINE | ID: mdl-29540593

ABSTRACT

Birnaviruses are unconventional members of the group of double-stranded RNA (dsRNA) viruses that are characterized by the lack of a transcriptionally active inner core. Instead, the birnaviral particles organize their genome in ribonucleoprotein complexes (RNPs) composed by dsRNA segments, the dsRNA-binding VP3 protein, and the virally encoded RNA-dependent RNA polymerase (RdRp). This and other structural features suggest that birnaviruses may follow a completely different replication program from that followed by members of the Reoviridae family, supporting the hypothesis that birnaviruses are the evolutionary link between single-stranded positive RNA (+ssRNA) and dsRNA viruses. Here we demonstrate that infectious bursal disease virus (IBDV), a prototypical member of the Birnaviridae family, hijacks endosomal membranes of infected cells through the interaction of a viral protein, VP3, with the phospholipids on the cytosolic leaflet of these compartments for replication. Employing a mutagenesis approach, we demonstrated that VP3 domain PATCH 2 (P2) mediates the association of VP3 with the endosomal membranes. To determine the role of VP3 P2 in the context of the virus replication cycle, we used avian cells stably overexpressing VP3 P2 for IBDV infection. Importantly, the intra- and extracellular virus yields, as well as the intracellular levels of VP2 viral capsid protein, were significantly diminished in cells stably overexpressing VP3 P2. Together, our results indicate that the association of VP3 with endosomes has a relevant role in the IBDV replication cycle. This report provides direct experimental evidence for membranous compartments such as endosomes being required by a dsRNA virus for its replication. The results also support the previously proposed role of birnaviruses as an evolutionary link between +ssRNA and dsRNA viruses.IMPORTANCE Infectious bursal disease (IBD; also called Gumboro disease) is an acute, highly contagious immunosuppressive disease that affects young chickens and spreads worldwide. The etiological agent of IBD is infectious bursal disease virus (IBDV). This virus destroys the central immune organ (bursa of Fabricius), resulting in immunosuppression and reduced responses of chickens to vaccines, which increase their susceptibility to other pathogens. IBDV is a member of Birnaviridae family, which comprises unconventional members of dsRNA viruses, whose replication strategy has been scarcely studied. In this report we show that IBDV hijacks the endosomes of the infected cells for establishing viral replication complexes via the association of the ribonucleoprotein complex component VP3 with the phospholipids in the cytosolic leaflet of endosomal membranes. We show that this interaction is mediated by the VP3 PATCH 2 domain and demonstrate its relevant role in the context of viral infection.


Subject(s)
Endosomes/virology , Infectious bursal disease virus/physiology , Phospholipids/metabolism , Viral Structural Proteins/genetics , Viral Structural Proteins/metabolism , Animals , Cell Line , HeLa Cells , Humans , Infectious bursal disease virus/pathogenicity , Mutagenesis , Protein Domains , Quail , Viral Structural Proteins/chemistry , Virus Replication
5.
Expert Opin Biol Ther ; 17(8): 945-959, 2017 08.
Article in English | MEDLINE | ID: mdl-28604109

ABSTRACT

INTRODUCTION: Breast cancer is the most common cancer in women all over the world. Furthermore, up to one third of breast tumors develop metastases that are resistant to standard therapies. Gene therapeutic strategies have been developed in order to specifically target cancer cells either directly or through the stimulation of antitumor immunity. Areas covered: This review describes the therapeutic strategies that are currently under development to treat this disease using engineered viral vectors including: adenovirus, adeno-associated virus, lentivirus, poxvirus, reovirus, baculovirus, herpesvirus and oncolytic viruses. Advantages and disadvantages of these multiple gene therapy platforms are discussed in detail. Expert opinion: Metastatic breast cancer is a perfect candidate for gene therapy approaches due to the presence of several tumor antigens and the aberrant expression of many molecular pathways. Oncolytic vectors are able to attack tumor cells while sparing normal cells and their activity is often enhanced by the administration of chemotherapy. However, more efforts are needed in order to reduce toxicity and to achieve better transduction efficiency. Improved preclinical models and a more critical patient selection for clinical trials, along with advances in gene therapy regulations, will surely facilitate the evolution of gene therapy for the treatment of metastatic breast cancer.


Subject(s)
Breast Neoplasms/therapy , Oncolytic Virotherapy , Adenoviridae/genetics , Female , Genetic Vectors/genetics , Genetic Vectors/metabolism , Humans , Lentivirus/genetics , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/virology , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neural Stem Cells/virology , Oncolytic Viruses/genetics , Poxviridae/genetics
6.
Viral Immunol ; 30(1): 70-76, 2017.
Article in English | MEDLINE | ID: mdl-27809679

ABSTRACT

In this study, we evaluated the immunogenicity and efficacy of mucosal delivery of a recombinant modified vaccinia Ankara virus (MVA) expressing the secreted version of bovine herpesvirus type 1 (BoHV-1) glycoprotein D (MVA-gDs) without addition of adjuvant in two animal models. First, we demonstrated the capability of MVA-gDs of inducing both local and systemic anti-gD humoral immune response after intranasal immunization of mice. Then, we confirmed that two doses of MVA-gDs administered intranasally to rabbits induced systemic anti-gD antibodies and conferred protection against BoHV-1 challenge. Our results show the potential of using MVA as a vector for the rational design of veterinary vaccines capable of inducing specific and protective immune responses both at local and systemic level.


Subject(s)
Drug Carriers , Herpesviridae Infections/prevention & control , Herpesvirus 1, Bovine/immunology , Herpesvirus Vaccines/immunology , Vaccinia virus/genetics , Viral Proteins/immunology , Administration, Intranasal , Animals , Antibodies, Viral/blood , Disease Models, Animal , Female , Herpesviridae Infections/immunology , Herpesvirus Vaccines/administration & dosage , Herpesvirus Vaccines/genetics , Mice, Inbred BALB C , Rabbits , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Proteins/genetics
9.
Vaccine ; 32(36): 4625-32, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-24968152

ABSTRACT

In this study, a recombinant modified vaccinia virus Ankara vector expressing a chimeric multi-antigen was obtained and evaluated as a candidate vaccine in homologous and heterologous prime-boost immunizations with a recombinant protein cocktail. The chimeric multi-antigen comprises immunodominant B and T cell regions of three Babesia bovis proteins. Humoral and cellular immune responses were evaluated in mice to compare the immunogenicity induced by different immunization schemes. The best vaccination scheme was achieved with a prime of protein cocktail and a boost with the recombinant virus. This scheme induced high level of specific IgG antibodies and secreted IFN and a high degree of activation of IFNγ(+) CD4(+) and CD8(+) specific T cells. This is the first report in which a novel vaccine candidate was constructed based on a rationally designed multi-antigen and evaluated in a prime-boost regime, optimizing the immune response necessary for protection against bovine babesiosis.


Subject(s)
Babesia bovis/immunology , Babesiosis/prevention & control , Immunization, Secondary , Protozoan Vaccines/immunology , Recombinant Proteins/immunology , Animals , Babesia bovis/genetics , Babesiosis/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Chick Embryo , Cricetinae , Fibroblasts/immunology , Genetic Vectors/immunology , Immunity, Cellular , Immunoglobulin G/blood , Interferon-gamma/blood , Male , Mice , Mice, Inbred BALB C , Swine , Vaccinia virus/genetics
10.
Braz. j. microbiol ; 45(1): 231-234, 2014. ilus, tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1469606

ABSTRACT

Canarypox viruses (CNPV) carrying the coding sequence of VP2 protein from infectious bursal disease virus (IBDV) were obtained. These viruses were able to express VP2 protein in vitro and to induce IBDV-neutralizing antibodies when inoculated in specific pathogen-free chickens demonstrating that CNPV platform is usefulness to develop immunogens for chickens.


Subject(s)
Animals , Chickens/virology , Viral Proteins , Infectious bursal disease virus , Canarypox virus
11.
Rev Argent Microbiol ; 44(2): 75-84, 2012.
Article in Spanish | MEDLINE | ID: mdl-22997764

ABSTRACT

Development and preliminary assessment of a recombinant canarypox virus as an antirabic vaccine candidate. In Argentina, rabies is limited to some northern provinces. Availability of new vaccines abolishing the handling of the rabies virus and allowing disease control has regional and national strategic importance. Vaccines based on recombinant poxviruses have been successfully used as antirabic vaccines worldwide. Although these systems are not commercially available, the platform to obtain recombinant canarypox viruses (CNPV) has been previously set up in our laboratory. The aim of this work was the development and evaluation of an antirabic vaccine candidate based on recombinant CNPV expressing the rabies virus (RV) glycoprotein G (RG). A recombinant virus (CNPV-RG) expressing the RG coding sequence was designed. Inoculation of mice with this virus induced high RV seroneutralizing antibodies (3.58 and 9.76 IU/ml after 1 or 2 immunizations, respectively) and protected 78% of intracerebrally RV-challenged animals. In addition, it was determined that CNPV-RG has a relative potency of 3.5 IU/ml. The obtained results constituted the first stage of CNPV-RG evaluation as antirabic vaccine candidate. Further assays will be necessary to confirm its utility in species of veterinary interest.


Subject(s)
Antigens, Viral/immunology , Canarypox virus/immunology , Glycoproteins/immunology , Rabies Vaccines , Viral Envelope Proteins/immunology , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Antigens, Viral/genetics , Canarypox virus/genetics , Canarypox virus/growth & development , Canarypox virus/isolation & purification , Cell Line/virology , Chick Embryo , Chlorocebus aethiops , Cricetinae , Fibroblasts/virology , Glycoproteins/genetics , Kidney , Mesocricetus , Mice , Peptide Fragments/genetics , Peptide Fragments/immunology , Rabies/prevention & control , Rabies Vaccines/immunology , Specific Pathogen-Free Organisms , Vaccines, Synthetic/immunology , Vero Cells/virology , Viral Envelope Proteins/genetics , Virus Cultivation
12.
J Vet Sci ; 13(2): 199-201, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22705743

ABSTRACT

A recombinant modified vaccinia Ankara (MVA) virus expressing mature viral protein 2 (VP2) of the infectious bursal disease virus (IBDV) was constructed to develop MVA-based vaccines for poultry. We demonstrated that this recombinant virus was able to induce a specific immune response by observing the production of anti-IBDV-seroneutralizing antibodies in specific pathogen-free chickens. Besides, as the epitopes of VP2 responsible to induce IBDV-neutralizing antibodies are discontinuous, our results suggest that VP2 protein expressed from MVA-VP2 maintained the correct conformational structure. To our knowledge, this is the first report on the usefulness of MVA-based vectors for developing recombinant vaccines for poultry.


Subject(s)
Birnaviridae Infections/veterinary , Infectious bursal disease virus/immunology , Poultry Diseases/prevention & control , Vaccinia virus/genetics , Viral Structural Proteins/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral , Birnaviridae Infections/prevention & control , Cells, Cultured , Chick Embryo , Chickens , Fibroblasts/metabolism , Poultry Diseases/virology , Specific Pathogen-Free Organisms , Vaccinia virus/immunology , Vaccinia virus/metabolism , Viral Structural Proteins/genetics , Viral Structural Proteins/metabolism
13.
Rev. argent. microbiol ; 44(2): 75-84, jun. 2012. ilus, graf, tab
Article in Spanish | BINACIS | ID: bin-129223

ABSTRACT

En la Argentina, la rabia está circunscripta a algunas provincias del norte. La disponibilidad de nuevas vacunas que eliminen la manipulación del virus rábico y que permitan el control de la enfermedad es de importancia estratégica nacional y regional. Las vacunas basadas en poxvirus recombinantes se han utilizado con éxito como vacunas antirrábicas a nivel mundial. SI bien estos sistemas no están disponibles comercialmente, la plataforma de obtención de virus canarypox (CNPV) recombinantes ya ha sido implementada en nuestro laboratorio. El objetivo de este trabajo fue obtener y evaluar un candidato a vacuna antirrábica basado en CNPV recombinantes que expresan la glicoproteína G (RG) del virus rábico (RV). Se construyó un virus recombinante que expresa la secuencia codificante de RG (CNPV-RG). La inoculación de ratones con este virus indujo altos títulos de anticuerpos seroneutralizantes de RV (3,58 y 9,76 Ul/ml después de una o dos inmunizaciones, respectivamente) y protegió al 78 % de los animales desafiados intracerebralmente con RV. Además, se determinó que el CNPV-RG posee una potencia relativa de 3,5 Ul/ml. Los resultados obtenidos constituyen la primera etapa en la evaluación del CNPV-RG como candidato a vacuna antirrábica. Se requerirán nuevos ensayos para confirmar su utilidad en especies de interés veterinario.(AU)


In Argentina, rabies is limited to some northern provinces. Availability of new vaccines abolishing the handling of the rabies virus and allowing disease control has regional and national strategic importance. Vaccines based on recombinant poxviruses have been successfully used as antirabic vaccines worldwide. Although these systems are not commercially available, the platform to obtain recombinant canarypox viruses (CNPV) has been previously set up in our laboratory. The aim of this work was the development and evaluation of an antirabic vaccine candidate based on recombinant CNPV expressing the rabies virus (RV) glycoprotein G (RG). A recombinant virus (CNPV-RG) expressing the RG coding sequence was designed. Inoculation of mice with this virus induced high RV seroneutralizing antibodies (3.58 and 9.76 lU/ml after 1 or 2 immunizations, respectively) and protected 78% of intracerebrally RV-challenged animals. In addition, it was determined that CNPV-RG has a relative potency of 3.5 lU/ml. The obtained results constituted the first stage of CNPV-RG evaluation as antirabic vaccine candidate. Further assays will be necessary to confirm its utility in species of veterinary Interest.(AU)


Subject(s)
Animals , Chick Embryo , Cricetinae , Mice , Antigens, Viral/immunology , Canarypox virus/immunology , Glycoproteins/immunology , Rabies Vaccines , Viral Envelope Proteins/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Antigens, Viral/genetics , Canarypox virus/genetics , Canarypox virus/growth & development , Canarypox virus/isolation & purification , Cell Line/virology , Chlorocebus aethiops , Fibroblasts/virology , Glycoproteins/genetics , Kidney , Mesocricetus , Peptide Fragments/genetics , Peptide Fragments/immunology , Rabies/prevention & control , Rabies Vaccines/immunology , Specific Pathogen-Free Organisms , Vaccines, Synthetic/immunology , Vero Cells/virology , Viral Envelope Proteins/genetics , Virus Cultivation
14.
Rev. argent. microbiol ; 44(2): 75-84, jun. 2012. ilus, graf, tab
Article in Spanish | LILACS | ID: lil-657615

ABSTRACT

En la Argentina, la rabia está circunscripta a algunas provincias del norte. La disponibilidad de nuevas vacunas que eliminen la manipulación del virus rábico y que permitan el control de la enfermedad es de importancia estratégica nacional y regional. Las vacunas basadas en poxvirus recombinantes se han utilizado con éxito como vacunas antirrábicas a nivel mundial. SI bien estos sistemas no están disponibles comercialmente, la plataforma de obtención de virus canarypox (CNPV) recombinantes ya ha sido implementada en nuestro laboratorio. El objetivo de este trabajo fue obtener y evaluar un candidato a vacuna antirrábica basado en CNPV recombinantes que expresan la glicoproteína G (RG) del virus rábico (RV). Se construyó un virus recombinante que expresa la secuencia codificante de RG (CNPV-RG). La inoculación de ratones con este virus indujo altos títulos de anticuerpos seroneutralizantes de RV (3,58 y 9,76 Ul/ml después de una o dos inmunizaciones, respectivamente) y protegió al 78 % de los animales desafiados intracerebralmente con RV. Además, se determinó que el CNPV-RG posee una potencia relativa de 3,5 Ul/ml. Los resultados obtenidos constituyen la primera etapa en la evaluación del CNPV-RG como candidato a vacuna antirrábica. Se requerirán nuevos ensayos para confirmar su utilidad en especies de interés veterinario.


In Argentina, rabies is limited to some northern provinces. Availability of new vaccines abolishing the handling of the rabies virus and allowing disease control has regional and national strategic importance. Vaccines based on recombinant poxviruses have been successfully used as antirabic vaccines worldwide. Although these systems are not commercially available, the platform to obtain recombinant canarypox viruses (CNPV) has been previously set up in our laboratory. The aim of this work was the development and evaluation of an antirabic vaccine candidate based on recombinant CNPV expressing the rabies virus (RV) glycoprotein G (RG). A recombinant virus (CNPV-RG) expressing the RG coding sequence was designed. Inoculation of mice with this virus induced high RV seroneutralizing antibodies (3.58 and 9.76 lU/ml after 1 or 2 immunizations, respectively) and protected 78% of intracerebrally RV-challenged animals. In addition, it was determined that CNPV-RG has a relative potency of 3.5 lU/ml. The obtained results constituted the first stage of CNPV-RG evaluation as antirabic vaccine candidate. Further assays will be necessary to confirm its utility in species of veterinary Interest.


Subject(s)
Animals , Chick Embryo , Cricetinae , Mice , Antigens, Viral/immunology , Canarypox virus/immunology , Glycoproteins/immunology , Rabies Vaccines , Viral Envelope Proteins/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Antigens, Viral/genetics , Chlorocebus aethiops , Canarypox virus/genetics , Canarypox virus/growth & development , Canarypox virus/isolation & purification , Cell Line/virology , Fibroblasts/virology , Glycoproteins/genetics , Kidney , Mesocricetus , Peptide Fragments/genetics , Peptide Fragments/immunology , Rabies Vaccines/immunology , Rabies/prevention & control , Specific Pathogen-Free Organisms , Virus Cultivation , Vaccines, Synthetic/immunology , Vero Cells/virology , Viral Envelope Proteins/genetics
15.
Viral Immunol ; 24(4): 331-9, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21830904

ABSTRACT

Bovine herpesvirus-1 (BoHV-1) infection is distributed worldwide and the development of new tools to fight against this pathogen has become extremely important. In this work a recombinant modified vaccinia virus Ankara (MVA) vector expressing the secreted version of glycoprotein D, MVA-gDs, was obtained and evaluated as a candidate vaccine. First, the correct expression, antigenicity, and N-glycosylation of glycoprotein D were confirmed by molecular techniques. Then MVA-gDs was used as parenteral immunogen in BALB/C mice in which a specific anti-gD humoral immune response was induced and maintained for 7 mo. Two doses of MVA-gDs supplemented with cholera toxin delivered by intranasal immunization induced IgA anti-gD humoral immune responses in nasal and bronchopulmonary washes, as well as IgG anti-gD antibodies in serum samples. In order to evaluate the protection conferred by MVA-gDs immunization, a rabbit BoHV-1 challenge assay was performed. A shorter viral excretion period and a reduction in the number of animals shedding BoHV-1 was observed in the group immunized with recombinant MVA-gDs. In conclusion our data encourage further studies to evaluate MVA-gDs, alone or combined with other immunogens, as a candidate vaccine for BoHV-1.


Subject(s)
Drug Carriers , Herpesvirus Vaccines/immunology , Vaccinia virus/genetics , Viral Proteins/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/genetics , Administration, Intranasal , Animals , Antibodies, Viral/analysis , Antibodies, Viral/blood , Bronchoalveolar Lavage Fluid/immunology , Cholera Toxin/administration & dosage , Cholera Toxin/genetics , Disease Models, Animal , Female , Genetic Vectors , Herpesviridae Infections/immunology , Herpesviridae Infections/prevention & control , Herpesvirus Vaccines/administration & dosage , Herpesvirus Vaccines/genetics , Immunoglobulin A/analysis , Immunoglobulin G/blood , Male , Mice , Mice, Inbred BALB C , Nasal Mucosa/immunology , Rodent Diseases/immunology , Rodent Diseases/prevention & control , Time Factors , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Proteins/genetics , Virus Shedding
16.
Microb Pathog ; 44(2): 135-40, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17900851

ABSTRACT

Newcastle disease virus (NDV) causes an economically important disease that can vary from clinically inapparent to highly virulent forms. Generally, NDV strains isolated from wild birds are non-pathogenic for chicken. However, there are evidences supporting the fact that avirulent viruses maintained in feral birds could have caused outbreaks of virulent NDV in poultry. The strain-specific difference in virulence is determined by structural variations on the fusion glycoprotein (F). More basic amino acids are present in the F cleavage site of virulent strains. Nevertheless, other regions have been involved in virulence determination. When we subjected an avirulent NDV isolated from a wild bird to a host change we found that the virus arose was virulent for chicken. Nucleotide changes in the F protein cleavage site amino acid sequence and in the hemagglutinin-neuraminidase protein sequence are reported.


Subject(s)
Mutation , Newcastle Disease/virology , Newcastle disease virus/growth & development , Selection, Genetic , Animals , Birds , Chick Embryo , Chickens , DNA Mutational Analysis , HN Protein/genetics , Molecular Sequence Data , Newcastle disease virus/pathogenicity , Sequence Analysis, DNA , Viral Fusion Proteins/genetics , Viral Structural Proteins/genetics , Virulence/genetics
17.
Vaccine ; 23(48-49): 5583-9, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16099555

ABSTRACT

As a step towards developing a safe and effective edible vaccine against Newcastle disease virus (NDV), we have explored the use of plants genetically engineered to express viral proteins. We report the construction of transgenic potato plants expressing the genes coding for immunogenic proteins of NDV under the regulation of CaMV 35S promoter and its immunogenicity in mice. All mice receiving transgenic plant extracts in incomplete Freund adjuvant produced specific anti-NDV antibodies. Animals fed with transgenic leaves showed a specific response against NDV. Detection of IgA released from in vitro-cultured intestinal tissue fragments indicated the presence of IgA-secreting cells in the gut.


Subject(s)
Newcastle Disease/immunology , Newcastle disease virus/genetics , Plants, Genetically Modified , Viral Vaccines/genetics , Animals , Antibodies, Viral/biosynthesis , Antibody Formation , Immunity, Mucosal/drug effects , Mice , Mice, Inbred BALB C , Newcastle Disease/prevention & control , Newcastle disease virus/immunology , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
18.
Avian Dis ; 49(4): 546-50, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16404997

ABSTRACT

Wild waterfowl is considered a natural reservoir of potentially infectious agents and a source of pathogenic viruses like avian paramyxoviruses type 1 (APMV 1). In 1997, commercial poultry in Argentina had reached the status of being free from virulent Newcastle disease virus (NDV) infections. Vaccination and biosecurity measures are actively performed to maintain this preferential sanitary condition. However, the risk of reintroduction of pathogenic viruses is always present. In this context, we conducted a study to describe the status of wild healthy birds in a geographic region relevant for the poultry industry. The presence of anti-NDV antibodies was determined in different species in all areas sampled suggesting previous contact with NDV. Seven ND viruses were isolated and characterized as apathogenic strains by biological and molecular methods. The phylogenetic analysis revealed that the majority of the Argentinian isolates form a subgroup related to viruses of genotype II. The results presented here highlight the importance of maintaining strict biosecurity measures and vaccination programs in poultry industries in order to preserve the virulent NDV-free status for commercial flocks in the country.


Subject(s)
Birds/virology , Newcastle disease virus/isolation & purification , Amino Acid Sequence , Animals , Animals, Wild/virology , Argentina , Base Sequence , Genome, Viral , Molecular Sequence Data , Newcastle disease virus/classification , Newcastle disease virus/genetics , Phylogeny , RNA, Viral/genetics , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction , Serotyping , Viral Fusion Proteins/genetics
20.
Virus Genes ; 26(2): 199-206, 2003.
Article in English | MEDLINE | ID: mdl-12803472

ABSTRACT

The matrix protein gene was cloned and sequenced for several recent isolates of avian paramyxovirus type 1 (APMV-1). Specifically, isolates from pigeons and doves, members of the Columbidae family were examined. APMV-1 is the causative agent of Newcastle disease and the virus is associated with disease among a diverse number of avian species. Newcastle disease virus (NDV) isolates from pigeons have also been classified as pigeon paramyxovirus type 1 (PPMV-1). Matrix protein gene sequences for PPMV-1 isolates clustered together as a group relative to isolates from other species phylogenetically. However, there were also isolates from pigeons or doves that grouped with APMV-1 isolates from other species. This indicates that PPMV-1 may be circulating among Columbidae members as a distinct lineage, but that these avian species may also harbor other NDV strains as well. Of particular interest was a dove isolate from Europe that had an aberrant fusion protein cleavage site and was an outlying member phylogenetically between the two major groups of APMV-1 isolates.


Subject(s)
Columbidae/virology , Genes, Viral , Newcastle disease virus/genetics , Viral Matrix Proteins/genetics , Amino Acid Sequence , Animals , Base Sequence , DNA, Viral/genetics , Molecular Sequence Data , Newcastle disease virus/classification , Newcastle disease virus/isolation & purification , Phylogeny , Sequence Homology, Amino Acid , Viral Fusion Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL