Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.819
Filter
1.
Neural Regen Res ; 20(1): 234-241, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-38767488

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202501000-00031/figure1/v/2024-05-14T021156Z/r/image-tiff Early identification and treatment of stroke can greatly improve patient outcomes and quality of life. Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale (CPSS) and the Face Arm Speech Test (FAST) are commonly used for stroke screening, accurate administration is dependent on specialized training. In this study, we proposed a novel multimodal deep learning approach, based on the FAST, for assessing suspected stroke patients exhibiting symptoms such as limb weakness, facial paresis, and speech disorders in acute settings. We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements, facial expressions, and speech tests based on the FAST. We compared the constructed deep learning model, which was designed to process multi-modal datasets, with six prior models that achieved good action classification performance, including the I3D, SlowFast, X3D, TPN, TimeSformer, and MViT. We found that the findings of our deep learning model had a higher clinical value compared with the other approaches. Moreover, the multi-modal model outperformed its single-module variants, highlighting the benefit of utilizing multiple types of patient data, such as action videos and speech audio. These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke, thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting.

2.
J Gastrointest Oncol ; 15(3): 1214-1223, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38989400

ABSTRACT

Background: Gallbladder cancer (GBC) is a rare malignancy of the digestive tract, characterized by a remarkably poor prognosis. Currently, there is a controversy on the relationship between type 2 diabetes (T2D) and GBC. Additionally, no definitive conclusions were established regarding the causal relationships between alcohol intake frequency (AIF), age at menarche (AAM) and GBC. The objective of this study was to elucidate the causal association between T2D, AIF, AAM, and GBC. Methods: Single-nucleotide polymorphisms (SNPs) associated with exposures and outcomes were sourced from the Integrative Epidemiology Unit (IEU) Open Genome-Wide Association Study (GWAS) database. Specifically, the data of GBC comprised 907 East Asians (pathological results of all cases were registered into Biobank Japan) and 425,707 SNPs; T2D comprised 655,666 Europeans with 5,030,727 SNPs; AIF comprised 462,346 Europeans and 9,851,867 SNPs; AAM comprised 243,944 Europeans and 9,851,867 SNPs. The measurement of exposure traits is collected uniformly from the UK Biobank (UKB) database and presented in the form of standard deviation (SD) or the logarithmic form of the odds ratio (logOR). We employed a two-sample Mendelian randomization (MR) analysis to discern the causalities between T2D, AIF, AAM, and GBC. Sensitivity analyses were conducted to identify and address potential heterogeneity, horizontal pleiotropy, and outliers. Results: Our findings indicated that T2D reduced GBC risk [odds ratio (OR) =0.044; 95% confidence interval (CI): 0.004-0.55; P=0.015, inverse variance-weighted (IVW)]. However, no causal relationship was observed between AIF (OR =0.158; 95% CI: 5.33E-05 to 466.84; P=0.65, IVW), AAM (OR =0.19; 95% CI: 0.0003-140.34; P=0.62, IVW), and GBC. Sensitivity analysis revealed no evidence of horizontal pleiotropy, heterogeneity, or outliers, suggesting the robustness and reliability of our conclusions. Conclusions: T2D emerged as a potentially protective factor against GBC, whereas neither AIF nor AAM demonstrated a causal relationship with GBC risk. Regulation of glucose metabolism may be one of the methods for preventing GBC.

3.
Hepatology ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985971

ABSTRACT

BACKGROUND AND AIMS: Gut microbiota play a prominent role in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). Interleukin-33 (IL-33) is highly expressed at mucosal barrier sites and regulates intestinal homeostasis. Herein, we aimed to investigate the role and mechanism of intestinal IL-33 in MASLD. APPROACH AND RESULTS: In both human and mice with MASLD, hepatic expression of IL-33 and its receptor suppression of tumorigenicity 2 (ST2) showed no significant change compared to controls, while serum soluble ST2 levels in humans, as well as intestinal IL-33 and ST2 expression in mice were significantly increased in MASLD. Deletion of global or intestinal IL-33 in mice alleviated metabolic disorders, inflammation and fibrosis associated with MASLD by reducing intestinal barrier permeability and rectifying gut microbiota dysbiosis. Transplantation of gut microbiota from IL-33 deficiency mice prevented MASLD progression in wild type (WT) mice. Moreover, IL-33 deficiency resulted in a decrease in the abundance of trimethylamine N-oxide (TMAO)-producing bacteria. Inhibition of TMAO synthesis by 3,3-dimethyl-1-butanol (DMB) mitigated hepatic oxidative stress in mice with MASLD. Nuclear IL-33 bound to hypoxia inducible factor-1α (HIF-1α) and suppressed its activation, directly damaging the integrity of intestinal barrier. Extracellular IL-33 destroyed the balance of intestinal Th1/Th17 and facilitated Th1 differentiation through the ST2-Hif1a-Tbx21 axis. Knockout of ST2 resulted in a diminished MASLD phenotype resembling that observed in IL-33 deficiency mice. CONCLUSIONS: Intestinal IL-33 enhanced gut microbiota-derived TMAO synthesis and aggravated MASLD progression through dual regulation on HIF-1α. Targeting IL-33 and its associated microbiota may provide a potential therapeutic strategy for managing MASLD.

4.
Blood ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968151

ABSTRACT

We report on the antileukemic activity of homoharringtonine (HHT) in T-ALL. We showed that HHT inhibited NOTCH/MYC pathway and induced a significantly longer survival in T-ALL mouse and patient-derived xenograft models, therefore supporting HHT as a promising agent for T-ALL.

5.
Drug Resist Updat ; 76: 101116, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38968684

ABSTRACT

Drug resistance and tumor recurrence remain clinical challenges in the treatment of urothelial carcinoma (UC). However, the underlying mechanism is not fully understood. Here, we performed single-cell RNA sequencing and identified a subset of urothelial cells with epithelial-mesenchymal transition (EMT) features (EMT-UC), which is significantly correlated with chemotherapy resistance and cancer recurrence. To validate the clinical significance of EMT-UC, we constructed EMT-UC like cells by introducing overexpression of two markers, Zinc Finger E-Box Binding Homeobox 1 (ZEB1) and Desmin (DES), and examined their histological distribution characteristics and malignant phenotypes. EMT-UC like cells were mainly enriched in UC tissues from patients with adverse prognosis and exhibited significantly elevated EMT, migration and gemcitabine tolerance in vitro. However, EMT-UC was not specifically identified from tumorous tissues, certain proportion of them were also identified in adjacent normal tissues. Tumorous EMT-UC highly expressed genes involved in malignant behaviors and exhibited adverse prognosis. Additionally, tumorous EMT-UC was associated with remodeled tumor microenvironment (TME), which exhibited high angiogenic and immunosuppressive potentials compared with the normal counterparts. Furthermore, a specific interaction of COL4A1 and ITGB1 was identified to be highly enriched in tumorous EMT-UC, and in the endothelial component. Targeting the interaction of COL4A1 and ITGB1 with specific antibodies significantly suppressed tumorous angiogenesis and alleviated gemcitabine resistance of UC. Overall, our findings demonstrated that the driven force of chemotherapy resistance and recurrence of UC was EMT-UC mediated COL4A1-ITGB1 interaction, providing a potential target for future UC treatment.

6.
Natl Sci Rev ; 11(6): nwae188, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962716

ABSTRACT

Transposable elements (TEs) are ubiquitous genomic components and hard to study due to being highly repetitive. Here we assembled 232 chromosome-level genomes based on long-read sequencing data. Coupling the 232 genomes with 15 existing assemblies, we developed a pan-TE map comprising both cultivated and wild Asian rice. We detected 177 084 high-quality TE variations and inferred their derived state using outgroups. We found TEs were one source of phenotypic variation during rice domestication and differentiation. We identified 1246 genes whose expression variation was associated with TEs but not single-nucleotide polymorphisms (SNPs), such as OsRbohB, and validated OsRbohB's relative expression activity using a dual-Luciferase (LUC) reporter assays system. Our pan-TE map allowed us to detect multiple novel loci associated with agronomic traits. Collectively, our findings highlight the contributions of TEs to domestication, differentiation and agronomic traits in rice, and there is massive potential for gene cloning and molecular breeding by the high-quality Asian pan-TE map we generated.

7.
Phys Chem Chem Phys ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963693

ABSTRACT

As a representative of the new generation of high-energy explosives, TKX-50 has attracted widespread attention due to its remarkably low sensitivity toward shock. However, the reported decomposition barriers of TKX-50 (∼37 kcal mol-1) are comparable to those of commonly used explosives. The mechanism of its low shock sensitivity remains unclear. In this study, using an ab initio molecular dynamics method combined with a multiscale shock simulation technique and transition state calculations (at the B2PLYP-D3/Def2TZVP level), we discovered an unconventional reaction pathway of TKX-50 under shock, and its rate-controlling step is the dissociation of the hydroxyl radical (OH) from the anion ring after proton transfer, followed by ring rupture and the production of H2O and N2. The barrier for this OH dissociation reaction is as high as 51.9 kcal mol-1. In contrast, under thermal stimuli, TKX-50 prefers to open rings directly after proton transfer without losing the OH. The corresponding barrier is 35.4 kcal mol-1, which is in good agreement with previous studies. The reason for the unconventional reaction pathway of TKX-50 under shock may be the suppression of anion ring opening in thermal decomposition by steric hindrance upon shock compression. In addition, the dominant N2 generation pathway under shock releases less energy than pyrolysis which further explains the low shock sensitivity of TKX-50. This study comprehensively elucidates the different reaction mechanisms of TKX-50 under thermal and shock conditions and proposes a crucial reaction pathway leading to its low shock sensitivity. These findings will contribute to the understanding and application of tetrazole anionic energetic salts.

8.
Eur Heart J ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953786

ABSTRACT

BACKGROUND AND AIMS: Physical activity has proven effective in preventing atherosclerotic cardiovascular disease, but its role in preventing degenerative valvular heart disease (VHD) remains uncertain. This study aimed to explore the dose-response association between moderate to vigorous physical activity (MVPA) volume and the risk of degenerative VHD among middle-aged adults. METHODS: A full week of accelerometer-derived MVPA data from 87 248 UK Biobank participants (median age 63.3, female: 56.9%) between 2013 and 2015 were used for primary analysis. Questionnaire-derived MVPA data from 361 681 UK Biobank participants (median age 57.7, female: 52.7%) between 2006 and 2010 were used for secondary analysis. The primary outcome was the diagnosis of incident degenerative VHD, including aortic valve stenosis (AS), aortic valve regurgitation (AR), and mitral valve regurgitation (MR). The secondary outcome was VHD-related intervention or mortality. RESULTS: In the accelerometer-derived MVPA cohort, 555 incident AS, 201 incident AR, and 655 incident MR occurred during a median follow-up of 8.11 years. Increased MVPA volume showed a steady decline in AS risk and subsequent AS-related intervention or mortality risk, levelling off beyond approximately 300 min/week. In contrast, its association with AR or MR incidence was less apparent. The adjusted rates of AS incidence (95% confidence interval) across MVPA quartiles (Q1-Q4) were 11.60 (10.20, 13.20), 7.82 (6.63, 9.23), 5.74 (4.67, 7.08), and 5.91 (4.73, 7.39) per 10 000 person-years. The corresponding adjusted rates of AS-related intervention or mortality were 4.37 (3.52, 5.43), 2.81 (2.13, 3.71), 1.93 (1.36, 2.75), and 2.14 (1.50, 3.06) per 10 000 person-years, respectively. Aortic valve stenosis risk reduction was also observed with questionnaire-based MVPA data [adjusted absolute difference Q4 vs. Q1: AS incidence, -1.41 (-.67, -2.14) per 10 000 person-years; AS-related intervention or mortality, -.38 (-.04, -.88) per 10 000 person-years]. The beneficial association remained consistent in high-risk populations for AS, including patients with hypertension, obesity, dyslipidaemia, and chronic kidney disease. CONCLUSIONS: Higher MVPA volume was associated with a lower risk of developing AS and subsequent AS-related intervention or mortality. Future research needs to validate these findings in diverse populations with longer durations and repeated periods of activity monitoring.

9.
Mater Horiz ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953878

ABSTRACT

Affective computing, representing the forefront of human-machine interaction, is confronted with the pressing challenges of the execution speed and power consumption brought by the transmission of massive data. Herein, we introduce a bionic organic memristor inspired by the ligand-gated ion channels (LGICs) to facilitate near-sensor affective computing based on electroencephalography (EEG). It is constructed from a coordination polymer comprising Co ions and benzothiadiazole (Co-BTA), featuring multiple switching sites for redox reactions. Through advanced characterizations and theoretical calculations, we demonstrate that when subjected to a bias voltage, only the site where Co ions bind with N atoms from four BTA molecules becomes activated, while others remain inert. This remarkable phenomenon resembles the selective in situ activation of LGICs on the postsynaptic membrane for neural signal regulation. Consequently, the bionic organic memristor network exhibits outstanding reliability (200 000 cycles), exceptional integration level (210 pixels), ultra-low energy consumption (4.05 pJ), and fast switching speed (94 ns). Moreover, the built near-sensor system based on it achieves emotion recognition with an accuracy exceeding 95%. This research substantively adds to the ambition of realizing empathetic interaction and presents an appealing bionic approach for the development of novel electronic devices.

10.
Sci Rep ; 14(1): 15242, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956131

ABSTRACT

The cold tolerance of Litopenaeus vannamei is important for breeding in specific areas. To explore the cold tolerance mechanism of L. vannamei, this study analyzed biochemical indicators, cell apoptosis, and metabolomic responses in cold-tolerant (Lv-T) and common (Lv-C) L. vannamei under low-temperature stress (18 °C and 10 °C). TUNEL analysis showed a significant increase in apoptosis of hepatopancreatic duct cells in L. vannamei under low-temperature stress. Biochemical analysis showed that Lv-T had significantly increased levels of superoxide dismutase (SOD) and triglycerides (TG), while alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH-L), and uric acid (UA) levels were significantly decreased compared to Lv-C (p < 0.05). Metabolomic analysis displayed significant increases in metabolites such as LysoPC (P-16:0), 11beta-Hydroxy-3,20-dioxopregn-4-en-21-oic acid, and Pirbuterol, while metabolites such as 4-Hydroxystachydrine, Oxolan-3-one, and 3-Methyldioxyindole were significantly decreased in Lv-T compared to Lv-C. The differentially regulated metabolites were mainly enriched in pathways such as Protein digestion and absorption, Central carbon metabolism in cancer and ABC transporters. Our study indicate that low temperature induces damage to the hepatopancreatic duct of shrimp, thereby affecting its metabolic function. The cold resistance mechanism of Lv-T L. vannamei may be due to the enhancement of antioxidant enzymes and lipid metabolism.


Subject(s)
Apoptosis , Cold Temperature , Cold-Shock Response , Metabolomics , Penaeidae , Animals , Penaeidae/metabolism , Penaeidae/physiology , Metabolomics/methods , Metabolome , Superoxide Dismutase/metabolism
11.
Adv Sci (Weinh) ; : e2404397, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946685

ABSTRACT

Extraction of U(VI) in water is of great significance in energy and environmental fields. However, the traditional methods usually fail due to the indispensable extra addition of catalyst, adsorbent, precipitant, or sacrificial agents, which may lead to enhanced extraction costs and secondary pollution. Here, a new efficient uranium extraction strategy is proposed based on triboelectricity without adding a catalyst or other additives. It is found only under the friction between the microbubbles (generated under ultrasonication) and the water flow, that reactive oxygen species (ROS) can largely be generated, which thus contributes to the solidification of U(VI) from water. In addition, the magnetic field can affect the phase of the product. Under mechanical stirring, the product contains (UO2)O2·2H2O, while which contains UO2(OH)2 and (UO2)O2·4H2O under the magnetic stirring. Quenching experiments are also carried out to explore the influence of environmental factors. Most importantly, it shows great potential in the extraction of U(VI) from seawater. This work proposes a catalyst-free and light-free strategy toward the solidification of U(VI) from water, which avoids the secondary pollution of the catalyst to the environment and is low-cost, and has great potential in the real application.

12.
Heliyon ; 10(12): e32840, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975195

ABSTRACT

Background: The relationship between air pollution and cardiovascular diseases (CVDs) has garnered significant interest among researchers globally. This study employed bibliometric analysis to provide an overview of current research on the association between air pollution and CVDs, offering a comprehensive analysis of global research trends in this area. Methods: An exhaustive scrutiny of literature pertaining to the nexus between air pollution and CVDs from 2012 to 2022 was conducted through rigorous screening of the Web of Science Core Collection (WoSCC). Publications were exclusively considered in English. Subsequently, sophisticated analytical tools including CiteSpace 6.2.4R, Vosviewer 1.6.19, HistCite 2.1, Python 3.7.5, Microsoft Charticulator, and Bibliometrix Online Analysis Platform were deployed to delineate research trends in this domain. Results: The analysis of the dataset, comprising 1710 documents, unveiled a consistent escalation in scientific publications, peaking in 2022 with a total of 248 publications. Moreover, Environmental Science and Toxicology stood out as the predominant categories. Examination of keyword frequency highlighted the terms 'air pollution', 'cardiovascular disease', and 'particulate matter' as the most prevalent. Notably, the most prolific entities, in terms of authors, journals, organizations, and countries, were identified as Robert D. Brook, Environmental Health Perspectives, Harvard University, and the United States, respectively. Conclusion: The findings presented a notable increase in high-quality publications on this topic over the past 11 years, suggesting a positive outlook for future research. The study concluded with an examination of three key themes in research trends related to air pollution and CVDs: the initial physiological response to pollutant exposure, the pathways through which pollutants are transmitted, and the subsequent effects on target organs. Additionally, various air pollutants, such as particulate matter, nitric dioxide, and ozone, could contribute to multiple CVDs, including coronary heart disease, hypertension, and heart failure. Although some hypotheses have been put forward, the mechanisms of air pollution-related CVDs still need to be explored in the future.

13.
J Bone Oncol ; 47: 100614, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38975332

ABSTRACT

Objective: To develop a model combining clinical and radiomics features from CT scans for a preoperative noninvasive evaluation of Huvos grading of neoadjuvant chemotherapy in patients with HOS. Methods: 183 patients from center A and 42 from center B were categorized into training and validation sets. Features derived from radiomics were obtained from unenhanced CT scans.Following dimensionality reduction, the most optimal features were selected and utilized in creating a radiomics model through logistic regression analysis. Integrating clinical features, a composite clinical radiomics model was developed, and a nomogram was constructed. Predictive performance of the model was evaluated using ROC curves and calibration curves. Additionally, decision curve analysis was conducted to assess practical utility of nomogram in clinical settings. Results: LASSO LR analysis was performed, and finally, three selected image omics features were obtained.Radiomics model yielded AUC values with a good diagnostic effect for both patient sets (AUCs: 0.69 and 0.68, respectively). Clinical models (including sex, age, pre-chemotherapy ALP and LDH levels, new lung metastases within 1 year after surgery, and incidence) performed well in terms of Huvos grade prediction, with an AUC of 0.74 for training set. The AUC for independent validation set stood at 0.70. Notably, the amalgamation of radiomics and clinical features exhibited commendable predictive prowess in training set, registering an AUC of 0.78. This robust performance was subsequently validated in the independent validation set, where the AUC remained high at 0.75. Calibration curves of nomogram showed that the predictions were in good agreement with actual observations. Conclusion: Combined model can be used for Huvos grading in patients with HOS after preoperative chemotherapy, which is helpful for adjuvant treatment decisions.

14.
Gen Psychiatr ; 37(4): e101412, 2024.
Article in English | MEDLINE | ID: mdl-38975363

ABSTRACT

Background: Observational studies highlight the association between gut microbiota (GM) composition and depression; however, evidence for the causal relationship between GM and specific depressive symptoms remains lacking. Aims: We aimed to evaluate the causal relationship between GM and specific depressive symptoms as well as the mediating role of body mass index (BMI). Methods: We performed a two-sample Mendelian randomisation (MR) analysis using genetic variants associated with GM and specific depressive symptoms from genome-wide association studies. The mediating role of BMI was subsequently explored using mediation analysis via two-step MR. Results: MR evidence suggested the Bifidobacterium genus (ß=-0.03; 95% CI -0.05 to -0.02; p<0.001 and ß=-0.03; 95% CI -0.05 to -0.02; p<0.001) and Actinobacteria phylum (ß=-0.04; 95% CI -0.06 to -0.02; p<0.001 and ß=-0.03; 95% CI -0.05 to -0.03; p=0.001) had protective effects on both anhedonia and depressed mood. The Actinobacteria phylum also had protective effects on appetite changes (ß=-0.04; 95% CI -0.06 to -0.01; p=0.005), while the Family XI had an antiprotective effect (ß=0.03; 95% CI 0.01 to 0.04; p<0.001). The Bifidobacteriaceae family (ß=-0.01; 95% CI -0.02 to -0.01; p=0.001) and Actinobacteria phylum (ß=-0.02; 95% CI -0.03 to -0.01; p=0.001) showed protective effects against suicidality. The two-step MR analysis revealed that BMI also acted as a mediating moderator between the Actinobacteria phylum and appetite changes (mediated proportion, 34.42%) and that BMI partially mediated the effect of the Bifidobacterium genus (14.14% and 8.05%) and Actinobacteria phylum (13.10% and 8.31%) on both anhedonia and depressed mood. Conclusions: These findings suggest a potential therapeutic effect of Actinobacteria and Bifidobacterium on both depression and obesity. Further studies are required to translate these findings into clinical practice.

15.
Article in English | MEDLINE | ID: mdl-38970310

ABSTRACT

INTRODUCTION: Non-alcoholic fatty liver disease (NAFLD) has been reported to be helpful to identify high-risk individuals of developing prostate cancer. Our aim is to investigate the relationship between NAFLD and biochemical recurrence in metastatic prostate cancer patients. METHODS: We retrospectively investigated 602 patients with metastatic prostate cancer receiving the androgen deprivation therapy. Liver fat was estimated with liver-to-spleen ratio by computed tomography (CT) scans. The relationship between NAFLD and biochemical recurrence was investigated with Cox models. The model for biochemical recurrence was adjusted for multiple variables. RESULTS: NAFLD was significantly associated with biochemical recurrence in patients with Gleason score ≥4+3 when adjusting for each of body mass index (hazards ratio [HR] = 1.38; 95% confidence interval [CI] = 1.08-1.77; p = 0.01), visceral adipose tissue (HR = 1.36; 95% CI = 1.07-1.74; p = 0.01), hypertension (HR = 1.41; 95% CI = 1.10-1.80; p = 0.01), and diabetes mellitus (HR = 1.42; 95% CI = 1.11-1.82; p = 0.01), using age and prostate-specific antigen level as potential confounder. The 2-year biochemical recurrence rate in the Gleason score ≥4+3 patients with and without NAFLD was 84.0% (100/119) and 72.2% (130/180), respectively (p = 0.018). The median biochemical recurrence free survival of the Gleason score ≥4+3 patients with and without NAFLD were 17 and 21 months, respectively (p = 0.005). CONCLUSIONS: NAFLD is an independent risk factor for biochemical recurrence in patients with high-grade metastatic prostate cancer. If validated in prospective studies, future research should test whether treatment of NAFLD can lead to better prognosis.

16.
J Cardiovasc Pharmacol ; 84(1): 18-25, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38968565

ABSTRACT

ABSTRACT: Recent studies have revealed the benefits of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in heart failure patients. However, their effects on acute myocardial infarction (AMI) remain uncertain. Therefore, we conducted this meta-analysis to assess the effectiveness of SGLT2i in patients with AMI with or without diabetes. We conducted a comprehensive search of PubMed, Embase, and Cochrane Library encompassing data from inception until November 30, 2023. Relevant studies comparing SGLT2i with placebo or non-SGLT2i in patients with AMI were included. The mean difference and/or odds ratio (OR) with 95% confidence intervals were pooled using a fixed-effects model when the heterogeneity statistic (I2) was less than 50%; otherwise, a random-effects model was employed. Four randomized controlled trials and 4 observational studies involving 9397 patients with AMI were included in this meta-analysis. Patients treated with SGLT2i exhibited a significantly lower rate of hospitalization for heart failure (OR = 0.50, 95% CI: 0.32-0.80) and all-cause death (OR = 0.65, 95% CI: 0.44-0.95) compared with those treated with placebo or non-SGLT2i. Furthermore, the use of SGLT2i was associated with a significant increase in left ventricular ejection fraction (mean difference = 1.90, 95% CI: 1.62-2.17) and a greater reduction of N-terminal prohormone of brain natriuretic peptide (OR = 0.88, 95% CI 0.82-0.94). Subgroup analysis revealed that in patients with diabetes, SGLT2i exhibited similar effects. The present meta-analysis provided evidence indicating the effectiveness of SGLT2i in patients with AMI; SGLT2i may serve as an additional therapeutic option for patients with AMI, regardless of the presence or absence of diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Failure , Myocardial Infarction , Randomized Controlled Trials as Topic , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/complications , Treatment Outcome , Myocardial Infarction/drug therapy , Myocardial Infarction/mortality , Myocardial Infarction/diagnosis , Male , Middle Aged , Female , Aged , Heart Failure/drug therapy , Heart Failure/mortality , Heart Failure/physiopathology , Heart Failure/diagnosis , Observational Studies as Topic , Risk Factors , Risk Assessment , Recovery of Function , Time Factors
17.
BMC Plant Biol ; 24(1): 636, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971734

ABSTRACT

BACKGROUND: The monocot chimeric jacalins (MCJ) proteins, which contain a jacalin-related lectin (JRL) domain and a dirigent domain (DIR), are specific to Poaceae. MCJ gene family is reported to play an important role in growth, development and stress response. However, their roles in maize have not been thoroughly investigated. RESULTS: In this study, eight MCJ genes in the maize genome (designated as ZmMCJs) were identified, which displayed unequal distribution across four chromosomes. Phylogenetic relationships between the ZmMCJs were evident through the identification of highly conserved motifs and gene structures. Analysis of transcriptome data revealed distinct expression patterns among the ZmMCJ genes, leading to their classification into four different modules, which were subsequently validated using RT-qPCR. Protein structures of the same module are found to be relatively similar. Subcellular localization experiments indicated that the ZmMCJs are mainly located on the cell membrane. Additionally, hemagglutination and inhibition experiments show that only part of the ZmMCJs protein has lectin activity, which is mediated by the JRL structure, and belongs to the mannose-binding type. The cis-acting elements in the promoter region of ZmMCJ genes predicted their involvement response to phytohormones, such as abscisic acid and jasmonic acid. This suggests that ZmMCJ genes may play a significant role in both biotic and abiotic stress responses. CONCLUSIONS: Overall, this study adds new insights into our understanding of the gene-protein architecture, evolutionary characteristics, expression profiles, and potential functions of MCJ genes in maize.


Subject(s)
Genome, Plant , Phylogeny , Plant Lectins , Zea mays , Zea mays/genetics , Plant Lectins/genetics , Plant Lectins/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Stress, Physiological/genetics
18.
Nat Commun ; 15(1): 5680, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971819

ABSTRACT

Obesity shapes anti-tumor immunity through lipid metabolism; however, the mechanisms underlying how colorectal cancer (CRC) cells utilize lipids to suppress anti-tumor immunity remain unclear. Here, we show that tumor cell-intrinsic ATP6V0A1 drives exogenous cholesterol-induced immunosuppression in CRC. ATP6V0A1 facilitates cholesterol absorption in CRC cells through RAB guanine nucleotide exchange factor 1 (RABGEF1)-dependent endosome maturation, leading to cholesterol accumulation within the endoplasmic reticulum and elevated production of 24-hydroxycholesterol (24-OHC). ATP6V0A1-induced 24-OHC upregulates TGF-ß1 by activating the liver X receptor (LXR) signaling. Subsequently, the release of TGF-ß1 into the tumor microenvironment by CRC cells activates the SMAD3 pathway in memory CD8+ T cells, ultimately suppressing their anti-tumor activities. Moreover, we identify daclatasvir, a clinically used anti-hepatitis C virus (HCV) drug, as an ATP6V0A1 inhibitor that can effectively enhance the memory CD8+ T cell activity and suppress tumor growth in CRC. These findings shed light on the potential for ATP6V0A1-targeted immunotherapy in CRC.


Subject(s)
CD8-Positive T-Lymphocytes , Cholesterol , Colorectal Neoplasms , Signal Transduction , Transforming Growth Factor beta1 , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Humans , Animals , Cholesterol/metabolism , Mice , Cell Line, Tumor , Transforming Growth Factor beta1/metabolism , Immunologic Memory , Vacuolar Proton-Translocating ATPases/metabolism , Tumor Microenvironment/immunology , Liver X Receptors/metabolism , Hydroxycholesterols/metabolism , Hydroxycholesterols/pharmacology , Pyrrolidines/pharmacology , Smad3 Protein/metabolism , Mice, Inbred C57BL , Carbamates/pharmacology
19.
Pediatr Radiol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980355

ABSTRACT

BACKGROUND: Pectus excavatum (PE) is a common congenital chest wall deformity with various associated health concerns, including psychosocial impacts, academic challenges, and potential cardiopulmonary effects. OBJECTIVE: This study aimed to investigate the cardiac consequences of right atrioventricular groove compression in PE using cardiac magnetic resonance imaging. MATERIALS AND METHODS: A retrospective analysis was conducted on 661 patients with PE referred for evaluation. Patients were categorized into three groups based on the degree of right atrioventricular groove compression (no compression (NC), partial compression (PC), and complete compression(CC)). Chest wall indices were measured: pectus index (PI), depression index (DI), correction index (CI), and sternal torsion. RESULTS: The study revealed significant differences in chest wall indices between the groups: PE, NC=4.15 ± 0.94, PC=4.93 ± 1.24, and CC=7.2 ± 4.01 (P<0.0001). Left ventricle ejection fraction (LVEF) showed no significant differences: LVEF, NC=58.72% ± 3.94, PC=58.49% ± 4.02, and CC=57.95% ± 3.92 (P=0.0984). Right ventricular ejection fraction (RVEF) demonstrated significant differences: RVEF, NC=55.2% ± 5.3, PC=53.8% ± 4.4, and CC=53.1% ± 4.8 (P≥0.0001). Notably, the tricuspid valve (TV) measurement on the four-chamber view decreased in patients with greater compression: NC=29.52 ± 4.6; PC=28.26 ± 4.8; and CC=24.74 ± 5.73 (P<0.0001). CONCLUSION: This study provides valuable insights into the cardiac consequences of right atrioventricular groove compression in PE and lends further evidence of mild cardiac changes due to PE.

20.
J Sci Food Agric ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975904

ABSTRACT

BACKGROUND: Evaluation of herbicidal activity and identification of active compounds are important bases for the development of new botanical herbicides. RESULTS: This study confirmed that Symphoricarpos orbiculatus has high herbicidal activities against mono-dicotyledonous weeds, including Echinochloa crusgalli, Digitaria sanguinalis, Amaranthus retroflexus and Portulaca oleracea. By bioassay-guided isolation, 12 compounds were isolated and identified from S. orbiculatus for the first time, including iridoids: naucledal (K1), loganin (K2), loganigenin (K3), loganin acid (K4), glucologanin (K5) and vogeloside (K6), as well as flavonoids: quercetine (K7), luteolin (K8), nobiletin (K9), astragalin (K10), isorhamnetin 3-d-glucoside (K11) and rutin (K12). Biological assays showed that iridoids are the main active ingredients of S. orbiculatus. The compounds of K5 and K6 could inhibit both the root (IC50 = 37.54 and 38.91 µg mL-1, respectively) and shoot (IC50 = 42.78 and 45.72 µg mL-1, respectively) of Portulaca oleracea, which have a weeding toxicity similar to that of the commercialized plant-based herbicide pelargonic acid. In addition, the results of pot culture assay showed that S. orbiculatus ethanol extracts had high fresh weight control effect against Digitaria sanguinalis and P. oleracea at the concentration of 40 g L-1. After 7 days, both the soil treatment and the stem and leaf spray method resulted in severe leaf necrosis and significant leaf etiolation. CONCLUSION: Symphoricarpos orbiculatus and its herbicidal active compounds have the potential to develop into botanical herbicides, and are first reported in the present study. © 2024 Society of Chemical Industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...