Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 905
Filter
1.
BMC Genomics ; 25(1): 681, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982349

ABSTRACT

Analyzing the genetic diversity and selection characteristics of sheep (Ovis aries) holds significant value in understanding their environmental adaptability, enhancing breeding efficiency, and achieving effective conservation and rational utilization of genetic resources. In this study, we utilized Illumina Ovine SNP 50 K BeadChip data from four indigenous sheep breeds from the southern margin of the Taklamakan Desert (Duolang sheep: n = 36, Hetian sheep: n = 74, Kunlun sheep: n = 27, Qira black sheep: n = 178) and three foreign meat sheep breeds (Poll Dorset sheep: n = 105, Suffolk sheep: n = 153, Texel sheep: n = 150) to investigate the population structure, genetic diversity, and genomic signals of positive selection within the indigenous sheep. According to the Principal component analysis (PCA), the Neighbor-Joining tree (NJ tree), and Admixture, we revealed distinct clustering patterns of these seven sheep breeds based on their geographical distribution. Then used Cross Population Extended Haplotype Homozygosity (XP-EHH), Fixation Index (FST), and Integrated Haplotype Score (iHS), we identified a collective set of 32 overlapping genes under positive selection across four indigenous sheep breeds. These genes are associated with wool follicle development and wool traits, desert environmental adaptability, disease resistance, reproduction, and high-altitude adaptability. This study reveals the population structure and genomic selection characteristics in the extreme desert environments of native sheep breeds from the southern edge of the Taklimakan Desert, providing new insights into the conservation and sustainable use of indigenous sheep genetic resources in extreme environments. Additionally, these findings offer valuable genetic resources for sheep and other mammals to adapt to global climate change.


Subject(s)
Desert Climate , Polymorphism, Single Nucleotide , Selection, Genetic , Animals , Sheep/genetics , Genetics, Population , Haplotypes , Genetic Variation , Breeding
2.
Explor Target Antitumor Ther ; 5(3): 600-626, 2024.
Article in English | MEDLINE | ID: mdl-38966167

ABSTRACT

Aim: The main objective of this study was to investigate the antitumor effect of a mouse anti-human glypican-1 (GPC1) monoclonal antibody (mAb) on non-small cell lung carcinoma (NSCLC) and associated molecular mechanisms. Methods: The anti-proliferative and anti-migratory activities of anti-GPC1 mAb were examined in A549 and H460 NSCLC cells and LL97A lung fibroblasts. The inhibitory effect of anti-GPC1 mAb on tumor growth was evaluated in an orthotopic lung tumor model. Results: The in vitro study showed that anti-GPC1 mAb profoundly inhibited the anchorage-independent growth of A549 and H460 NSCLC cells and exhibited relatively high cytotoxic activities towards LL97A lung fibroblasts, A549/LL97A and H460/LL97A coculture spheroids. Moreover, anti-GPC1 mAb significantly decreased the expression of phospho-Src (p-Src; Tyr416), p-Akt (Ser473) and ß-catenin in the co-cultured LL97A lung fibroblasts, and the expression of phospho-mitogen-activated protein kinase kinase (p-MEK; Ser217/221) and phospho-90 kDa ribosomal s6 kinase (p-p90RSK; Ser380) in co-cultured A549 cells. When anti-GPC1 mAb was administered to tumor-bearing mice, the inhibitory effect of anti-GPC1 mAb on the orthotopic lung tumor growth was not statistically significant. Nonetheless, results of Western blot analysis showed significant decrease in the phosphorylation of fibroblast growth factor receptor 1 (FGFR1) at Tyr766, Src at Tyr416, extracellular signal-regulated kinase (ERK) at Thr202/Tyr204, 90 kDa ribosomal S6 kinase (RSK) at Ser380, glycogen synthase kinases 3α (GSK3α) at Ser21 and GSK3ß at Ser9 in tumor tissues. These data implicate that anti-GPC1 mAb treatment impairs the interaction between tumor cells and tumor associated fibroblasts by attenuating the paracrine FGFR signal transduction. Conclusions: The relatively potent cytotoxicity of anti-GPC1 mAb in lung fibroblasts and its potential inhibitory effect on the paracrine FGFR signal transduction warrant further studies on the combined use of this mAb with targeted therapeutics to improve therapeutic outcomes in lung cancer.

3.
Heliyon ; 10(13): e33312, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040262

ABSTRACT

Sustainable development has become a strategic consensus in response to the global environmental problems. Green credit is a major policy innovation that promotes the transformation of economic development mode and industrial green transformation (IGT). Using provincial panel data from 2005 to 2020, we investigate the effect of green credit on IGT using a systematic GMM model, a dynamic threshold model, as well as the possible nonlinear relationship. Benchmark regression results show that green credit can encourage industrial green transformation. In addition, there is a single green credit threshold with a value of 0.2612. The trend is "negative to positive". According to the moderating effect results, environmental regulation moderates in a negative manner. As environmental regulations become more stringent, the contribution of green credit to IGT will diminish. The intermediary mechanism test demonstrates that green technology innovation and marketization level play a partial intermediary role. Heterogeneity testing confirms that the function of green credit in promoting industrial green transformation is more significant in regions with a higher level of green finance development and a lower degree of government intervention. Therefore, the government should encourage financial institutions to provide green credit products and services to meet the financing needs of different green projects, thereby facilitating the industrial green transformation.

4.
Emerg Infect Dis ; 30(8): 1683-1686, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043453

ABSTRACT

Ceftriaxone-resistant Neisseria gonorrhoeae FC428-like strains have disseminated across the Asia-Pacific region, with a continuous rise in prevalence during 2015-2022. To mitigate the effect of these strains, we advocate for enhanced molecular diagnostics, expanded surveillance networks, and a regionally coordinated effort to combat the global spread of FC428-like strains.


Subject(s)
Anti-Bacterial Agents , Ceftriaxone , Drug Resistance, Bacterial , Gonorrhea , Neisseria gonorrhoeae , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/genetics , Ceftriaxone/pharmacology , Humans , Gonorrhea/microbiology , Gonorrhea/epidemiology , Gonorrhea/drug therapy , Asia/epidemiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Prevalence , History, 21st Century
5.
IEEE Trans Cybern ; PP2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990745

ABSTRACT

This article analyzes and validates an approach of integration of adaptive dynamic programming (ADP) and adaptive fault-tolerant control (FTC) technique to address the consensus control problem for semi-Markovian jump multiagent systems having actuator bias faults. A semi-Markovian process, a more versatile stochastic process, is employed to characterize the parameter variations that arise from the intricacies of the environment. The reliance on accurate knowledge of system dynamics is overcome through the utilization of an actor-critic neural network structure within the ADP algorithm. A data-driven FTC scheme is introduced, which enables online adjustment and automatic compensation of actuator bias faults. It has been demonstrated that the signals generated by the controlled system exhibit uniform boundedness. Additionally, the followers' states can achieve and maintain consensus with that of the leader. Ultimately, the simulation results are given to demonstrate the efficacy of the designed theoretical findings.

6.
J Surg Res ; 301: 324-335, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39013279

ABSTRACT

INTRODUCTION: Cardiopulmonary bypass (CPB) leads to severe inflammation and lung injury. Our previous study showed that Ac2-26 (an active n-terminal peptide of Annexin A1) can reduce acute lung injury. The aim of this study was to evaluate the effect of Ac2-26 on lung injury in CPB rats. METHODS: Forty rats were randomly divided into the sham, CPB, Ac, Ac/serine/threonine kinase 1 (AKT1), and Ac/ glycogen synthase kinase (GSK)-3ß groups. The rats in the sham group only received anesthesia, intubation, and cannulation. The rats in the other 4 groups received the standard CPB procedure. The rats in the CPB, Ac, Ac/AKT1, and Ac/GSK3ß groups were immediately injected with saline, Ac2-26 (1 mg/kg), Ac2-26 combined with short hairpin RNA (AKT1), or Ac2-26 combined with a GSK3ß inhibitor after CPB. At 12 h after the end of CPB, the PaO2/ fraction of inspired oxygen ratio, wet/dry weight ratio and protein content in the bronchoalveolar lavage fluid (BALF) were recorded. The numbers of macrophages and neutrophils in the BALF and blood were determined. Cytokine levels in the blood and BALF were investigated. Lung tissue histology and apoptosis were estimated. The expression of nuclear factor kappa- B, AKT1, GSK3ß, endothelial nitric oxide synthase and apoptosis-related proteins was analyzed. The survival of all the rats was recorded. RESULTS: Compared with the rats in the sham group, all the parameters examined worsened in the rats that received CPB. Compared with those in the CPB group, Ac2-26 significantly improved pulmonary capillary permeability, reduced cytokine levels, and decreased histological scores and apoptosis. The protective effect of Ac2-26 on lung injury was significantly reversed by AKT1 short hairpin RNA or a GSK3ß inhibitor. CONCLUSIONS: Ac2-26 significantly reduced lung injury and inflammation after CPB. The protective effect of Ac2-26 mainly depended on the AKT1/GSK3ß/endothelial nitric oxide synthase pathway.

7.
Environ Geochem Health ; 46(9): 304, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002087

ABSTRACT

Accumulating animal studies have demonstrated associations between ambient air pollution (AP) and metabolic dysfunction-associated fatty liver disease (MAFLD), but relevant epidemiological evidence is limited. We evaluated the association of long-term exposure to AP with the risk of incident MAFLD in Northwest China. The average AP concentration between baseline and follow-up was used to assess individual exposure levels. Cox proportional hazard models and restricted cubic spline functions (RCS) were used to estimate the association of PM2.5 and its constituents with the risk of MAFLD and the dose-response relationship. Quantile g-computation was used to assess the joint effects of mixed exposure to air pollutants on MAFLD and the weights of the various pollutants. We observed 1516 cases of new-onset MAFLD, with an incidence of 10.89%. Increased exposure to pollutants was significantly associated with increased odds of MAFLD, with hazard ratios (HRs) of 2.93 (95% CI: 1.22, 7.00), 2.86 (1.44, 5.66), 7.55 (3.39, 16.84), 4.83 (1.89, 12.38), 3.35 (1.35, 8.34), 1.89 (1.02, 1.62) for each interquartile range increase in PM2.5, SO42-, NO3-, NH4+, OM, and BC, respectively. Stratified analyses suggested that females, frequent exercisers and never-drinkers were more susceptible to MAFLD associated with ambient PM2.5 and its constituents. Mixed exposure to SO42-, NO3-, NH4+, OM and BC was associated with an increased risk of MAFLD, and the weight of BC had the strongest effect on MAFLD. Exposure to ambient PM2.5 and its constituents increased the risk of MAFLD.


Subject(s)
Air Pollutants , Particulate Matter , Humans , China/epidemiology , Male , Female , Middle Aged , Cohort Studies , Adult , Environmental Exposure/adverse effects , Fatty Liver/chemically induced , Fatty Liver/epidemiology , Proportional Hazards Models , Incidence , Air Pollution/adverse effects , Metabolic Diseases/epidemiology , Metabolic Diseases/chemically induced , Aged
8.
Hum Hered ; 89(1): 52-59, 2024.
Article in English | MEDLINE | ID: mdl-38830343

ABSTRACT

INTRODUCTION: Recessive mutations in the CAPN3 gene can lead to limb-girdle muscular dystrophy recessive 1 (LGMD R1). Targeted next-generation sequencing facilitates the discovery of new mutations linked with disease, owing to its ability to selectively enrich specific genomic regions. METHODS: We performed targeted next-generation sequencing of all exons of the CAPN3 gene in 4 patients with sporadic limb-girdle muscular dystrophy (LGMD) and further analyzed the effects of the novel identified variant using various software tools. RESULTS: We found 5 variants in CAPN3 gene in 4 patients, c.82_83insC (insertion mutation) and c.1115+2T>C (splicing mutation) are reported for the first time in CAPN3 (NM_000070.2). The bioinformatics analysis indicated that these two novel variants affected CAPN3 transcription as well as translation. DISCUSSION: Our findings reveal previously unreported splicing mutation and insertion mutation in CAPN3 gene, further expanding the pathogenic gene profile of LGMD.


Subject(s)
Asian People , Calpain , Muscle Proteins , Muscular Dystrophies, Limb-Girdle , Humans , Calpain/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Muscle Proteins/genetics , Male , Female , Asian People/genetics , High-Throughput Nucleotide Sequencing , Adult , Mutation/genetics , China , Adolescent , Exons/genetics , Young Adult , East Asian People
9.
Bioresour Technol ; 406: 130992, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38885726

ABSTRACT

Methane recovery and organics removal in sulfate (SO42-)-rich wastewater anaerobic digestion are hindered by electron competition between methanogenesis and sulfidogenesis. Here, intermittently electrostimulated bioelectrodes were developed to facilitate direct interspecies electron transfer (DIET)-driven syntrophic methanogenesis, increasing substrate competition among methanogenic archaea (MA). By optimising the electrochemical environment, MA was able to employ electron transfer more efficiently than sulfate-reducing bacteria (SRB), resulting in significant methane accumulation (58.1 ± 1.0 mL-CH4/m3reactor) and COD removal (90.5 ± 0.5 %) at lower COD/SO42- ratio. Intermittent electrostimulation improved the metabolic pathway for electroactive bacteria to utilize acetate and direct electrons to electrotrophic MA, decreasing SRB abundance and affecting the sulfate reduction pathway. Intermittently electrostimulated biofilms significantly increased gene levels of key enzymes in electron transport for cytochrome and e-pili biosynthesis, crucial for DIET, demonstrating enhanced DIET-driven syntrophic methanogenesis. This study provides a strategic approach to optimize methanogenesis in sulfate-rich wastewater anaerobic digestion.


Subject(s)
Methane , Sulfates , Wastewater , Sulfates/metabolism , Anaerobiosis , Electron Transport , Methane/metabolism , Bioreactors , Biofilms , Archaea/metabolism , Bacteria/metabolism , Electrons , Electrodes
10.
Sci Total Environ ; 946: 174187, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38936741

ABSTRACT

Nutrient requirement for crop growth, defined as the amount of nutrient that crops take up from soil to produce a specific grain yield, is a key parameter in determining fertilizer application rate. However, existing studies primarily focus on identifying nitrogen (N), phosphorus (P), and potassium (K) requirements solely in relation to grain yield, neglecting grain protein content, a crucial index for wheat grain quality. Addressing this gap, we conducted multi-site, multi-cultivar, and multi-year field trials across three ecological regions of China from 2016 to 2020 to elucidate variations in nutrient requirements for grain yield and grain protein. The research findings revealed that wheat grain yield ranged from 4.1 to 9.3 Mg ha-1 (average 6.9 Mg ha-1) and grain protein content ranged from 98 to 157 g kg-1 (average 127 g kg-1) across the three regions. Notably, the N requirement exhibited a nonlinear correlation with the wheat grain yield but a linear increase with increasing grain protein, while the P and K requirements positively correlated with grain yield and protein content. Regression models were formulated to determine the nutrient requirements (MENR), enabling the prediction of N, P, and K requirements for leading cultivars with varying grain yields and protein contents. Implementing nutrient requirements based on MENR projections resulted in substantial reductions in fertilizer rates: 22.0 kg ha-1 N (10.7 %), 9.9 kg ha-1 P (20.2 %), and 8.1 kg ha-1 K (16.3 %). This translated to potential savings of 0.4 Mt. N, 0.23 Mt. P, and 0.17 Mt. K, consequently mitigating 5.5 Mt. CO2 greenhouse-gas emission and yielding an economic benefit of 0.8 billion US$ annually in China. These findings underscore the significance of considering grain yield and protein content in estimating nutrient requirements for fertilizer recommendations to realize high-yielding, high-protein wheat production, and minimize overfertilization and associated environmental risks.


Subject(s)
Edible Grain , Fertilizers , Nitrogen , Phosphorus , Potassium , Triticum , China , Nitrogen/analysis , Potassium/analysis , Potassium/metabolism , Phosphorus/analysis , Edible Grain/growth & development , Triticum/growth & development , Agriculture/methods , Nutrients/analysis
11.
J Cardiothorac Surg ; 19(1): 312, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824570

ABSTRACT

OBJECTIVE: About 10% of patients after cardiopulmonary bypass (CPB) would undergo acute liver injury, which aggravated the mortality of patients. Ac2-26 has been demonstrated to ameliorate organic injury by inhibiting inflammation. The present study aims to evaluate the effect and mechanism of Ac2-26 on acute liver injury after CPB. METHODS: A total of 32 SD rats were randomized into sham, CPB, Ac, and Ac/AKT1 groups. The rats only received anesthesia, and rats in other groups received CPB. The rats in Ac/AKT1 were pre-injected with the shRNA to interfere with the expression of AKT1. The rats in CPB were injected with saline, and rats in Ac and Ac/AKT1 groups were injected with Ac2-26. After 12 h of CPB, all the rats were sacrificed and the peripheral blood and liver samples were collected to analyze. The inflammatory factors in serum and liver were detected. The liver function was tested, and the pathological injury of liver tissue was evaluated. RESULTS: Compared with the sham group, the inflammatory factors, liver function, and pathological injury were worsened after CPB. Compared with the CPB group, the Ac2-26 significantly decreased the pro-inflammatory factors and increased the anti-inflammatory factor, improved liver function, and ameliorated the pathological injury. All the therapeutic effects of Ac2-26 were notably attenuated by the shRNA of AKT1. The Ac2-26 increased the GSK3ß and eNOS, and this promotion was inhibited by the shRNA. CONCLUSION: The Ac2-26 significantly treated the liver injury, inhibited inflammation, and improved liver function. The effect of Ac2-26 on liver injury induced by CPB was partly associated with the promotion of AKT1/GSK3ß/eNOS.


Subject(s)
Cardiopulmonary Bypass , Glycogen Synthase Kinase 3 beta , Nitric Oxide Synthase Type III , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Animals , Cardiopulmonary Bypass/adverse effects , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Rats , Nitric Oxide Synthase Type III/metabolism , Male , Disease Models, Animal , Liver/pathology , Signal Transduction
12.
Phytomedicine ; 132: 155807, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38876010

ABSTRACT

BACKGROUND: The efficacy of flavonoid supplementation in animal models of pulmonary fibrosis has been demonstrated. PURPOSE: We conducted a systematic review and meta-analysis to evaluate the efficacy and underlying mechanisms of flavonoids in animal models of bleomycin-induced pulmonary fibrosis. STUDY DESIGN: Relevant studies (n = 45) were identified from English- and Chinese-language databases from the inception of the database until October 2023. METHODS: Methodological quality was evaluated using the SYRCLE risk of bias tool. Statistical analyses were conducted using RevMan 5.3 and Stata 17.0. Lung inflammation and fibrosis score were the primary outcome indicators. RESULTS: Flavonoids can alleviate pathological changes in the lungs. The beneficial effects of flavonoids on pulmonary fibrosis likely relate to their inhibition of inflammatory responses, restoration of oxidative and antioxidant homeostasis, and regulation of fibroblast proliferation, migration, and activation by transforming growth factor ß1/mothers against the decapentaplegic homologue/AMP-activated protein kinase (TGF-ß1/Smad3/AMPK), inhibitor kappa B alpha/nuclear factor-kappa B (IκBα/NF-κB), phosphatidylinositol 3-kinase (PI3K)/AKT, interleukin 6/signal transducer/activator of transcription 3 (IL6/STAT3), and nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2-Keap1) pathways. CONCLUSION: Flavonoids are potential candidate compounds for the prevention and treatment of pulmonary fibrosis. However, extensive preclinical research is necessary to confirm the antifibrotic properties of natural flavonoids.

13.
Front Public Health ; 12: 1378027, 2024.
Article in English | MEDLINE | ID: mdl-38939562

ABSTRACT

Background: Pesticides are widely used in agricultural activities. Although pesticide use is known to cause damage to the human body, its relationship with thyroid function remains unclear. Therefore, this study aimed to investigate the association between pesticide exposure and thyroid function. Methods: The Chinese database used included 60 patients with pyrethroid poisoning and 60 participants who underwent health checkups between June 2022 and June 2023. The NHANES database included 1,315 adults enrolled from 2007 to 2012. The assessed pesticide and their metabolites included 2,4-dichlorophenoxyacetic acid (2,4-D), 4-fluoro-3-phenoxybenzoic acid (4F3PB), para-nitrophenol (PN), 3-phenoxybenzoic acid (3P), and trans-dichlorovinyl-dimethylcyclopropane carboxylic acid (TDDC). The evaluated indicators of thyroid function were measured by the blood from the included population. The relationship between pesticide exposure and thyroid function indexes was investigated using linear regression, Bayesian kernel machine regression (BKMR), restricted cubic spline (RCS), and weighted quantile sum (WQS) models. Results: The Chinese data showed that pesticide exposure was negatively correlated with the thyroid function indicators FT4, TT4, TgAb, and TPOAb (all p < 0.05). The BKMR model analysis of the NHANES data showed that the metabolic mixture of multiple pesticides was negatively associated with FT4, TSH, and Tg, similar to the Chinese database findings. Additionally, linear regression analysis demonstrated positive correlations between 2,4-D and FT3 (p = 0.041) and 4F3PB and FT4 (p = 0.003), whereas negative associations were observed between 4F3PB and Tg (p = 0.001), 4F3PB and TgAb (p = 0.006), 3P and TgAB (p = 0.006), 3P and TPOAb (p = 0.03), PN and TSH (p = 0.003), PN and TT4 (p = 0.031), and TDDC and TPOAb (p < 0.001). RCS curves highlighted that most pesticide metabolites were negatively correlated with thyroid function indicators. Finally, WQS model analysis revealed significant differences in the weights of different pesticide metabolites on the thyroid function indexes. Conclusion: There is a significant negative correlation between pesticide metabolites and thyroid function indicators, and the influence weights of different pesticide metabolites on thyroid function indicators are significantly different. More research is needed to further validate the association between different pesticide metabolites and thyroid disease.


Subject(s)
Nutrition Surveys , Pesticides , Thyroid Function Tests , Thyroid Gland , Humans , Male , Female , Middle Aged , China , Adult , Thyroid Gland/drug effects , Environmental Exposure/adverse effects , Databases, Factual , Aged , 2,4-Dichlorophenoxyacetic Acid , East Asian People
15.
Article in English | MEDLINE | ID: mdl-38904741

ABSTRACT

The present study investigated the relations between maternal depressive symptoms and internalizing problems in offspring during late childhood and early adolescence, examining sex differences using symptom network analysis. A total of 885 Chinese youths in late childhood (n = 497, 38.6% girls; age = 9.58 years, SD = 0.24) and early adolescence (n = 388, 48.5% girls; age = 11.30 years, SD = 0.24) and their mothers (Mage = 37.34 years, SD = 5.42) were recruited. Cross-lagged panel network (CLPN) analysis was used to explore bridge symptoms (i.e., symptoms connecting two or more mental disorders) and identify transmission pathways between maternal depressive symptoms and offspring's internalizing problems at these two developmental stages. The CLPN results revealed that in late childhood, the bridge connections in the network model were boys feeling worried to mothers feeling distractible, and girls feeling worried to mothers feeling powerless. In early adolescence, the bridge connections were boys experiencing depressed mood to mothers feeling powerless, and mothers feeling bad to girls experiencing depressed mood. These findings highlight the network-level relations between maternal depressive symptoms and offspring internalizing problems. They provide insights into the developmental differences and similarities in symptoms during these periods and suggest ways to break the vicious cycle of psychopathology between mothers and their children.

16.
Bioresour Technol ; 406: 130946, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857635

ABSTRACT

In this manuscript, three components of lignocellulosic biomass were obtained by deconstructing bamboo with γ-valerolactone-H2O biphasic system, and the delignification rate of 80.92 % was achieved at 120 °C for 90 min. Lignin nanospheres with diameters ranging from 75 nm to 2 um could be customized by varying the self-assembly rate. Furthermore, the lignin nanospheres-poly(vinyl alcohol) film was prepared by cross-linking lignin nanospheres and poly(vinyl alcohol), which can obtain 90 % ultraviolet absorption capacity, while the light transmittance in non-ultraviolet band was almost unchanged. At the same time, due to the strong hydrogen formation between lignin nanospheres and poly(vinyl alcohol) bond network, the tensile properties of the composite film were also improved by 30 %. Besides, the high specific surface area of biomass-derived porous biochar (2056 m2/g) can be obtained after carbonization of solid residues at 850 °C for 2 h, which was almost 8 times the specific surface area of the direct biomass carbonization due to the removal of lignin and hemicellulose. biomass-derived porous biochar can be used as an adsorbent, with a CO2 capture capacity of 4.5 mmol g-1 at normal temperature (25 °C, 1 bar). The filtrate after the reaction contained a large amount of hemicellulose oligomers, which can be reacted with dichloromethane at 170 °C for 1 h to obtain the furfural yield of 74 %. In summary, the proposed biorefinery scheme achieves a full-component upgrade of lignocellulose and can be further applied in various downstream fields.


Subject(s)
Biomass , Lactones , Lignin , Phosphoric Acids , Lactones/chemistry , Lignin/chemistry , Phosphoric Acids/chemistry , Charcoal/chemistry , Water/chemistry , Sasa/chemistry , Porosity , Polyvinyl Alcohol/chemistry , Nanospheres/chemistry
17.
J Hazard Mater ; 475: 134906, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38889455

ABSTRACT

The alternating current (AC)-driven bioelectrochemical process, in-situ coupling cathodic reduction and anodic oxidation in a single electrode, offers a promising way for the mineralization of refractory aromatic pollutants (RAPs). Frequency modulation is vital for aligning reduction and oxidation phases in AC-driven bioelectrodes, potentially enhancing their capability to mineralize RAPs. Herein, a frequency-modulated AC-driven bioelectrode was developed to enhance RAP mineralization, exemplified by the degradation of Alizarin Yellow R (AYR). Optimal performance was achieved at a frequency of 1.67 mHz, resulting in the highest efficiency for AYR decolorization and subsequent mineralization of intermediates. Performance declined at both higher (3.33 and 8.30 mHz) and lower (0.83 mHz) frequencies. The bioelectrode exhibited superior electron utilization, bidirectional electron transfer, and redox bifunctionality, effectively aligning reduction and oxidation processes to enhance AYR mineralization. The 1.67 mHz frequency facilitated the assembly of a collaborative microbiome dedicated to AYR bio-mineralization, characterized by an increased abundance of functional consortia proficient in azo dye reduction (e.g., Stenotrophomonas and Shinella), aromatic intermediates oxidation (e.g., Sphingopyxis and Sphingomonas), and electron transfer (e.g., Geobacter and Pseudomonas). This study reveals the role of frequency modulation in AC-driven bioelectrodes for enhanced RAP mineralization, offering a novel and sustainable approach for treating RAP-bearing wastewater.


Subject(s)
Electrodes , Oxidation-Reduction , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Biodegradation, Environmental , Azo Compounds/chemistry , Coloring Agents/chemistry , Electrochemical Techniques , Anthraquinones/chemistry
18.
Article in English | MEDLINE | ID: mdl-38886247

ABSTRACT

OBJECTIVE: To investigate the effect of urinary PAHs on MAFLD. METHODS: The study included 3,136 adults from the National Health and Nutrition Examination Survey (NHANES) conducted between 2009 and 2016. Among them, 1,056 participants were diagnosed with MAFLD and were designated as the case group. The analysis of the relationship between monohydroxy metabolites of seven PAHs in urine and MAFLD was carried out using logistic regression and Bayesian kernel regression (BKMR) models. RESULTS: In single-pollutant models, the concentration of 2-hydroxynaphthalene (2-OHNAP) was positively correlated with MAFLD (OR = 1.47, 95% CI 1.18, 1.84), whereas 3-hydroxyfluorene (3-OHFLU) and 1-hydroxypyrene (1-OHPYR) demonstrated a negative correlation with MAFLD (OR = 0.59, 95% CI 0.48 0.73; OR = 0.70, 95% CI 0.55, 0.89). Conversely, in multi-pollutant models, 2-OHNAP, 2-hydroxyfluorene (2-OHFLU), 2-hydroxyphenanthrene, and 3-hydroxyphenanthrene (2&3-OHPHE) displayed positive correlations with MAFLD (OR = 6.17, 95% CI 3.15, 12.07; OR = 2.59, 95% CI 1.37, 4.89). However, 3-OHFLU and 1-OHPYR continued to exhibit negative correlations with MAFLD (OR = 0.09, 95% CI 0.05, 0.15; OR = 0.62, 95% CI 0.43, 0.88). Notably, the BKMR analysis mixtures approach did not indicate a significant joint effect of multiple PAHs on MAFLD, but identified interactions between 3-OHFLU and 2-OHFLU, 1-OHPYR and 2-OHFLU, and 1-OHPYR and 3-OHFLU. CONCLUSION: No significant association was found between mixed PAHs exposure and the risk of MAFLD. However, interactions were observed between 3-OHFLU and 2-OHFLU. Both 2-OHFLU and 2&3-OHPHE exposure are significant risk factors for MAFLD, whereas 3-OHFLU is a key protective factor for the disease.

19.
Food Chem ; 457: 140136, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38936129

ABSTRACT

Excessive dietary salt intake leads to health issues, while reducing NaCl content compromises flavor. Therefore, identifying methods to decrease salt levels without sacrificing flavor is crucial. This study investigated the sensory interaction between the saltiness of NaCl and the pungency of Litsea oleoresin. Glyceryl monostearate (6.6%) and soy lecithin (4.4%) were used as gelling agents to create oleogels, which were then employed to immobilize NaCl nanocrystals, optimizing sensory interactions. NaCl nanocrystals (427.73 ± 61.98 nm) were encapsulated in a Litsea oleoresin-sunflower seed oleogel system with uniform distribution. Sensory evaluation indicated that the NaCl nanocrystal/Litsea oleoresin@oleogel system, with moderate pungency, significantly enhanced perceived saltiness intensity (29.00 ± 1.14, compared to the control, 18.48 ± 1.12) (P < 0.05). When applied to potato chips, this system noticeably increased saltiness perception. This research provides a promising approach for developing low-sodium yet flavorful foods.

20.
Phytomedicine ; 132: 155826, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38897045

ABSTRACT

BACKGROUND: Perillyl alcohol (POH) is a aroma monoterpene commonly obtained from various plants' essential oil. Recently, increasing researches have demonstrated that POH may be useful, not only as flavor compound, but also as bioactive molecule because of a variety of biological activities. PURPOSE: The aim of this review is to summarize the production, pharmacological activities and molecular mechanism, active derivatives, toxicity and parmacokinetics, and industrial application of POH. METHODS: A systematic search of published articles up to January 2024 in Web of Science, China Knowledge Network, and PubMed databases is conducted using the following keywords: POH, POH derivatives, biological or pharmacological, production or synthesis, pharmacokinetics, toxicity and application. RESULTS: Biotechnological production is considered to be a potential alternative approach to generate POH. POH provides diverse pharmacological benefits, including anticancer, antimicrobial, insecticidal, antioxidant, anti-inflammatory, hypotensive, vasorelaxant, antinociceptive, antiasthmatic, hepatoprotective effects, etc. The underlying mechanisms of action include modulation of NF-κB, JNK/c-Jun, Notch, Akt/mTOR, PI3K/Akt/eNOS, STAT3, Nrf2 and ERS response pathways, mitigation of mitochondrial dysfunction and membrane integrity damage, and inhibition of ROS accumulation, pro-inflammatory cytokines release and NLRP3 activation. What's more, the proteins or genes influenced by POH against diseases refer to Bax, Bcl-2, cyclin D1, CDK, p21, p53, HIF-1α, AP-1, caspase-3, M6P/IGF2R, PARP, VEGF, etc. Some clinical studies report that intranasal delivery of POH is a safe and effective treatment for cancer, but further clinical investigations are needed to confirm other health benefits of POH in human healthy. Depending on these health-promoting properties together with desirable flavor and safety, POH can be employed as dietary supplement, preservative and flavor additive in food and cosmetic fields, as building block in synthesis fields, as anticancer drug in medicinal fields, and as pesticides and herbicides in agricultural fields. CONCLUSION: This review systematically summarizes the recent advances in POH and highlights its therapeutic effects and potential mechanisms as well as the clinical settings, which is helpful to develop POH into functional food and new candidate drug for prevention and management of diseases. Future studies are needed to conduct more biological activity studies of POH and its derivatives, and check their clinical efficacy and potential side effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...