Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.284
Filter
1.
Biochem Biophys Rep ; 39: 101739, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38974020

ABSTRACT

Mesenchymal stem cells (MSCs) have tremendous potential in cell therapy and regenerative medicine. The placenta-derived MSCs (PMSCs) are becoming favorable sources as they are ethically preferable and rich in MSCs. Although several subgroups of PMSCs have been identified from human term placenta, optimal sources for specific clinical applications remain to be elucidated. This study aimed to isolate MSCs from various components of the placenta, and compare their biological characteristics, including morphology, proliferation, immunophenotype, differentiation potential, growth factor and cytokine secretion, and immunomodulatory properties. Finally, four distinct groups of PMSCs were isolated from the placenta: amniotic membrane-derived MSCs (AM-MSCs), chorionic membrane-derived MSCs (CM-MSCs), chorionic plate-derived MSCs (CP-MSCs), and chorionic villi-derived MSCs (CV-MSCs). The results showed that CV-MSCs had good proliferation ability, and were easier to induce osteogenic and chondrogenic differentiation; CP-MSCs exhibited the strongest inhibitory effect on the proliferation of activated T cells, secreted high levels of EGF and IL-6, and could well differentiate into osteoblasts, adipocytes, and chondroblasts; AM-MSCs showed good growth dynamics in the early generations, were able to grow at high density, and tended to induce differentiation into osteogenic and neural lineages. These findings may provide novel evidence for the selection of seed cells in clinical application.

2.
J Asian Nat Prod Res ; : 1-13, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958642

ABSTRACT

Fuzheng Huayu recipe (FZHYR) is a Chinese patent medicine for the treatment of fibrosis. The effects of FZHYR on pulmonary fibrosis and macrophage polarization were investigated in vitro. FZHYR inhibited pulmonary inflammation and fibrosis and M2 polarization of macrophages in bleomycin-induced pulmonary fibrosis (BPF) of rat model. Differentially expressed genes were screened by high-throughput mRNA sequencing and GSEA showed that oxidative phosphorylation (OXPHOS) was correlated with BPF. FZHYR inhibited expressions of Ndufa2 and Ndufa6 in lung tissues of BPF rats. These findings suggest that OXPHOS pathway serves as a possible target for pulmonary fibrosis therapy by FZHYR.

3.
J Hazard Mater ; 474: 134759, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38823100

ABSTRACT

Short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) are hazardous industrial chemicals that tend to bioaccumulate in animal-derived foodstuffs through the food supply chain. However, the lack of reliable noninvasive bioindicators hinders the monitoring of farm animal exposure to CPs. In this study, 169 cattle hair samples were collected from beef cattle farms in six Chinese provinces, with further beef, feed, and soil samples being collected in Hebei province. Geographical differences in CP concentrations were observed in the hair samples, and CP concentrations in samples collected from Hebei province decreased in the following order: hair > feed > beef > soil. C10-11Cl6-7 and C14Cl7-8 were the predominant SCCPs and MCCPs, respectively, in all the hair, beef, feed, and soil samples. CP concentrations in hair samples significantly correlated with those in beef, feed, and soil samples, indicating that hair can be used as a bioindicator of cattle exposure to CPs. The possible health risks associated with exposure to CPs through beef consumption, especially for children and high-volume beef consumers, should be further investigated.


Subject(s)
Hair , Paraffin , Animals , Cattle , Hair/chemistry , Paraffin/analysis , China , Hydrocarbons, Chlorinated/analysis , Animal Feed/analysis , Environmental Monitoring/methods , Farms , Soil Pollutants/analysis , Environmental Pollutants/analysis , Food Contamination/analysis
4.
Nucleic Acids Res ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850159

ABSTRACT

Genomic instability is one of the hallmarks of cancer. While loss of histone demethylase KDM6A increases the risk of tumorigenesis, its specific role in maintaining genomic stability remains poorly understood. Here, we propose a mechanism in which KDM6A maintains genomic stability independently on its demethylase activity. This occurs through its interaction with SND1, resulting in the establishment of a protective chromatin state that prevents replication fork collapse by recruiting of RPA and Ku70 to nascent DNA strand. Notably, KDM6A-SND1 interaction is up-regulated by KDM6A SUMOylation, while KDM6AK90A mutation almost abolish the interaction. Loss of KDM6A or SND1 leads to increased enrichment of H3K9ac and H4K8ac but attenuates the enrichment of Ku70 and H3K4me3 at nascent DNA strand. This subsequently results in enhanced cellular sensitivity to genotoxins and genomic instability. Consistent with these findings, knockdown of KDM6A and SND1 in esophageal squamous cell carcinoma (ESCC) cells increases genotoxin sensitivity. Intriguingly, KDM6A H101D & P110S, N1156T and D1216N mutations identified in ESCC patients promote genotoxin resistance via increased SND1 association. Our finding provides novel insights into the pivotal role of KDM6A-SND1 in genomic stability and chemoresistance, implying that targeting KDM6A and/or its interaction with SND1 may be a promising strategy to overcome the chemoresistance.

5.
Bioresour Technol ; : 131030, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38917911

ABSTRACT

This study investigates the efficacy of pyrite in enhancing biohydrogen production from xylose at low temperature (20 °C). Higher hydrogen yield rates (Rm) and reduced lag time (λ) were achieved across initial xylose concentrations ranging from 2-10 g/L. At an optimal xylose concentration of 5 g/L, pyrite reduced λ by 2.5 h and increased Rm from 1.3 to 2.7 mL h-1. These improvements are attributed to pyrite's ability to enhance the secretion of extracellular polymeric substance and flavins, facilitate NADH and NAD+ generation and transition, and favor biohydrogen production. Thermodynamic analyses and Gibbs free energy calculations further elucidated pyrite's role in the full reaction process and rate-limiting steps at low temperature. This study offers valuable insights into improving the efficiency of biohydrogen production at low temperature, with significant implications for energy conservation.

6.
Food Chem ; 457: 140186, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38924911

ABSTRACT

Qu-aroma is of great significance for evaluation the quality of Daqu starter. This study aimed to decode the Qu-aroma of medium-temperature Daqu (MT-Daqu) via "top-down" and "bottom-up" approaches. Firstly, 52 aroma descriptors were defined to describe the MT-Daqu aroma by quantitative descriptive analysis. Secondly, 193 volatile organic compounds (VOCs) were identified from 42 MT-Daqu samples by HS-SPME-GC-MS, and 43 dominant VOCs were screened out by frequence of occurrence or abundance. By Thin Film (TF)-SPME-GC-O-MS, 27 odors and 90 VOCs were detected in MT-Daqu mixture, and 14 odor-active VOCs were screened out by odor intensity. Thirdly, a five-level MT-Daqu aroma wheel was constructed by matching 52 aroma descriptors and 37 aroma-active VOCs. Finally, Qu-aroma of MT-Daqu was reconstructed with 37 aroma-active VOCs and evaluated by omission experiments. Hereinto, 26 key aroma-active VOCs were determined by OAV value ≥1, including isovaleric acid, 1-hexanol, isovaleraldehyde, 2-octanone, trimethylpyrazine, γ-nonalactone, 4-vinylguaiacol, etc.

8.
Prostaglandins Other Lipid Mediat ; 174: 106865, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945355

ABSTRACT

Pneumonia, an acute inflammatory lesion of the lung, is the leading cause of death in children aged < 5 years. We aimed to study the function and mechanism of Golgi phosphoprotein 3 (GOLPH3) in infantile pneumonia. Lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice and injury of MLE-12 cells were used as the pneumonia model in vitro. After GOLPH3 was knocked down, the histopathological changes of lung tissues were assessed by hematoxylin-eosin (H&E) staining. The Wet/Dry ratio of lung tissues was calculated. The enzyme-linked immunosorbent assay (ELISA) method was used to detecte the contents of inflammatory factors in bronchoalveolar lavage fluid (BALF). The damaged DNA in apoptotic cells in lung tissues was tested by Terminal deoxynucleotidyl transferase-mediated dUTP Nick end labeling (TUNEL) staining. Immunofluorescence staining analyzed LC3II and Golgi matrix protein 130 (GM130) expression in lung tissues and MLE-12 cells. The apoptosis of MLE-12 cells was measured by flow cytometry analysis. Additionally, the expression of proteins related to apoptosis, autophagy and Golgi stress was examined with immunoblotting. Results indicated that GOLPH3 knockdown alleviated lung tissue pathological changes in LPS-triggered ALI mice. LPS-induced inflammation and apoptosis in lung tissues and MLE-12 cells were remarkably alleviated by GOLPH3 deficiency. Besides, GOLPH3 depletion suppressed autophagy and Golgi stress in lung tissues and MLE-12 cells challenged with LPS. Moreover, Rapamycin (Rap), an autophagy inhibitor, counteracted inflammation and apoptosis inhibited by GOLPH3 silencing in LPS-induced MLE-12 cells. Furthermore, brefeldin A (BFA) pretreatment apparently abrogated the inhibitory effect of GOLPH3 knockdown on autophagy in MLE-12 cells exposed to LPS. To be concluded, GOLPH3 knockdown exerted lung protective effect against LPS-triggered inflammation and apoptosis by inhibiting Golgi stress mediated autophagy.

10.
BMC Pediatr ; 24(1): 359, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783220

ABSTRACT

BACKGROUND: Hypoxemia represents the most prevalent adverse event during flexible bronchoscopy procedures aimed at foreign body retrieval in pediatric patients; if not expeditiously managed, it carries the potential for cardiac or respiratory arrest. The specific risk factors contributing to the occurrence of hypoxemia during foreign body FB removal via bronchoscopy have yet to be definitively established. METHODS: This retrospective study included a cohort of 266 pediatric subjects from January 1, 2015, to December 31, 2022, who underwent flexible bronchoscopy for the purpose of FB extraction. In this cohort, the supraglottic airway was used to connect the anesthesia apparatus during the removal procedure. RESULTS: In total, 45 of the pediatric patients (16.9%) experienced episodes of hypoxemia during the FB removal procedure. Multivariate analysis revealed that the following factors were significantly associated with the occurrence of hypoxemia: an operation time exceeding 60 min (odds ratio [OR] 8.55; 95% confidence interval [CI] 3.82-19.13), a maximum diameter exceeding 7 mm (OR 5.03; 95% CI, 2.24-11.29), and the presence of radiological evidence indicating pneumonia (OR 2.69; 95% CI, 1.27-5.69). CONCLUSION: During flexible bronchoscopy procedures aimed at FB removal in pediatric patients, there is an increased susceptibility to hypoxemia. Factors including extended operation duration, larger FB dimensions, and radiographic evidence suggestive of pneumonia significantly contribute to a heightened risk of hypoxemia.


Subject(s)
Bronchoscopy , Foreign Bodies , Hypoxia , Humans , Bronchoscopy/adverse effects , Retrospective Studies , Foreign Bodies/complications , Female , Male , Hypoxia/etiology , Child , Child, Preschool , Risk Factors , Infant , Operative Time , Adolescent
11.
Int J Gen Med ; 17: 2055-2063, 2024.
Article in English | MEDLINE | ID: mdl-38751493

ABSTRACT

Surveillance of drug safety is an important aspect in the routine medical care. Adverse events caused by real-world drug utilization has become one of the leading causes of death and an urgent issue in the field of toxicology. Cardiovascular disease is now the leading cause of fatal diseases in most countries, especially in the elderly population who often suffer from multiple diseases and need long-term multidrug therapy. Among which, statins have been widely used to lower bad cholesterol and regress coronary plaque mainly in patients with hyperlipidemia and atherosclerotic cardiovascular diseases (ASCVD). Although the real-world benefits of statins are significant, different degrees and types of adverse drug reactions (ADR) such as liver dysfunction and muscle injury, have a great impact on the original treatment regimens as well as the quality of life. This review describes the epidemiology, mechanisms, early identification and post-intervention of statin-associated liver dysfunction and muscle injury based on the updated clinical evidence. It provides systematic and comprehensive guidance and necessary supplement for the clinical safety of statin use in cardiovascular diseases.

12.
Cancer Cell Int ; 24(1): 188, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811918

ABSTRACT

BACKGROUND: Breast cancer is a serious threat to women's health with high morbidity and mortality. The development of more effective therapies for the treatment of breast cancer is strongly warranted. Growing evidence suggests that targeting glucose metabolism may be a promising cancer treatment strategy. We previously identified a new glyceraldehyde-3-phosphate dehydrogenase (GAPDH) inhibitor, DC-5163, which shows great potential in inhibiting tumor growth. Here, we evaluated the anticancer potential of DC-5163 in breast cancer cells. METHODS: The effects of DC-5163 on breast cancer cells were investigated in vitro and in vivo. Seahorse, glucose uptake, lactate production, and cellular ATP content assays were performed to examine the impact of DC-5163 on cellular glycolysis. Cell viability, colony-forming ability, cell cycle, and apoptosis were assessed by CCK8 assay, colony formation assay, flow cytometry, and immunoblotting respectively. The anticancer activity of DC-5163 in vivo was evaluated in a mouse breast cancer xenograft model. RESULTS: DC-5163 suppressed aerobic glycolysis and reduced energy supply of breast cancer cells, thereby inhibiting breast cancer cell growth, inducing cell cycle arrest in the G0/G1 phase, and increasing apoptosis. The therapeutic efficacy was assessed using a breast cancer xenograft mouse model. DC-5163 treatment markedly suppressed tumor growth in vivo without inducing evident systemic toxicity. Micro-PET/CT scans revealed a notable reduction in tumor 18F-FDG and 18F-FLT uptake in the DC-5163 treatment group compared to the DMSO control group. CONCLUSIONS: Our results suggest that DC-5163 is a promising GAPDH inhibitor for suppressing breast cancer growth without obvious side effects. 18F-FDG and 18F-FLT PET/CT can noninvasively assess the levels of glycolysis and proliferation in tumors following treatment with DC-5163.

13.
Hepatol Int ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767772

ABSTRACT

BACKGROUND: Combined hepatocellular-cholangiocarcinoma (cHCC-CCA), as a rare primary hepatic tumor, is challenging to accurately assess in terms of the clinical outcomes and prognostic risk factors in patients. This study aimed to clarify the function of tertiary lymphoid structure (TLS) status in predicting the outcome of cHCC-CCA and to preliminarily explore the possible mechanism of TLS formation. METHODS: The TLSs, with different spatial distributions and densities, of 137 cHCC-CCA were quantified, and their association with prognosis was assessed by Cox regression and Kaplan-Meier analyses. We further validated TLS possible efficacy in predicting immunotherapy responsiveness in two cHCC-CCA case reports. TLS composition and its relationship to CXCL12 expression were analysed by fluorescent multiplex immunohistochemistry. RESULTS: A high intratumoural TLS score was correlated with prolonged survival, whereas a high TLS density in adjacent tissue indicated a worse prognosis in cHCC-CCA. Mature TLSs were related to favorable outcomes and showed more CD8 + T cells infiltrating tumor tissues. We further divided the cHCC-CCA patients into four immune grades by combining the peri-TLS and intra-TLS, and these grades were an independent prognostic factor. In addition, our reported cases suggested a potential value of TLS in predicting immunotherapy response in cHCC-CCA patients. Our findings suggested that CXCL12 expression in cHCC-CCA tissue was significantly correlated with TLS presence. CONCLUSION: The spatial distribution and density of TLSs revealing the characteristics of the cHCC-CCA immune microenvironment, significantly correlated with prognosis and provided a potential immunotherapy response biomarker for cHCC-CCA.

14.
World J Psychiatry ; 14(5): 670-677, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38808083

ABSTRACT

BACKGROUND: Epilepsy is a nervous system disease characterized by recurrent attacks, a long disease course, and an unfavorable prognosis. It is associated with an enduring therapeutic process, and finding a cure has been difficult. Patients with epilepsy are predisposed to adverse moods, such as resistance, anxiety, nervousness, and anxiety, which compromise treatment compliance and overall efficacy. AIM: To explored the influence of intensive psychological intervention on treatment compliance, psychological status, and quality of life (QOL) of patients with epilepsy. METHODS: The clinical data of 105 patients with epilepsy admitted between December 2019 and July 2023 were retrospectively analyzed, including those of 50 patients who underwent routine intervention (control group) and 55 who underwent intensive psychological intervention (research group). Treatment compliance, psychological status based on the Self-Rating Anxiety Scale (SAS) and Depression Scale Self-Rating Depression Scale (SDS) scores, hope level assessed using the Herth Hope Scale (HHS), psychological resilience evaluated using the Psychological Resilience Scale, and QOL determined using the QOL in Epilepsy-31 Inventory (QOLIE-31) were comparatively analyzed. RESULTS: Treatment compliance in the research group was 85.5%, which is significantly better than the 68.0% of the control group. No notable intergroup differences in preinterventional SAS and SDS scores were identified (P > 0.05); however, after the intervention, the SAS and SDS scores decreased significantly in the two groups, especially in the research group (P < 0.05). The two groups also exhibited no significant differences in preinterventional HHS, Connor-Davidson Resilience Scale (CD-RISC), and QOLIE-31 scores (P > 0.05). After 6 months of intervention, the research group showed evidently higher HHS, CD-RISC, tenacity, optimism, strength, and QOLIE-31 scores (P < 0.05). CONCLUSION: Intensive psychological intervention enhances treatment compliance, psychological status, and QOL of patients with epilepsy.

15.
Front Pharmacol ; 15: 1341039, 2024.
Article in English | MEDLINE | ID: mdl-38711992

ABSTRACT

Background: Gastric cancer (GC) is one of the major malignancies threatening human lives and health. Non-SMC condensin II complex subunit D3 (NCAPD3) plays a crucial role in the occurrence of many diseases. However, its role in GC remains unexplored. Materials and Methods: The Cancer Genome Atlas (TCGA) database, clinical samples, and cell lines were used to analyze NCAPD3 expression in GC. NCAPD3 was overexpressed and inhibited by lentiviral vectors and the CRISPR/Cas9 system, respectively. The biological functions of NCAPD3 were investigated in vitro and in vivo. Gene microarray, Gene set enrichment analysis (GSEA) and ingenuity pathway analysis (IPA) were performed to establish the potential mechanisms. Results: NCAPD3 was highly expressed in GC and was associated with a poor prognosis. NCAPD3 upregulation significantly promoted the malignant biological behaviors of gastric cancer cell, while NCAPD3 inhibition exerted a opposite effect. NCAPD3 loss can directly inhibit CCND1 and ESR1 expression to downregulate the expression of downstream targets CDK6 and IRS1 and inhibit the proliferation of gastric cancer cells. Moreover, NCAPD3 loss activates IRF7 and DDIT3 to regulate apoptosis in gastric cancer cells. Conclusion: Our study revealed that NCAPD3 silencing attenuates malignant phenotypes of GC and that it is a potential target for GC treatment.

16.
Clin Lung Cancer ; 25(5): 440-448, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38627155

ABSTRACT

BACKGROUND: Novel neoadjuvant chemoimmunotherapy treatments are being investigated for locally advanced non-small-cell lung cancer (NSCLC), but real-world outcomes for neoadjuvant treatments are poorly understood. This study examined neoadjuvant treatment patterns, real-world event-free survival (rwEFS) and overall survival (OS) in patients with resected, stage II-III NSCLC in the United States (US). METHODS: This retrospective study identified patients in the SEER-Medicare database (2007-2019) with newly diagnosed stage II, IIIA, and IIIB (N2) NSCLC (AJCC 8th edition) treated with neoadjuvant chemo/chemoradiotherapy and resection (index date: neoadjuvant therapy initiation). Neoadjuvant treatment regimens were described. rwEFS (time from index to first recurrence or death, whichever occurred first) and OS (time from index to death) were summarized by Kaplan-Meier analysis for overall population, by disease stage at diagnosis, and by neoadjuvant treatment modality. RESULTS: 221 patients (stage II, N=70; stage III, N=151) met eligibility criteria. The median follow-up from index was 32.7 months. All patients received neoadjuvant chemotherapy (51%) or chemoradiotherapy (49%) prior to surgery; 97% of patients received platinum-based regimens, among which carboplatin+paclitaxel was the most frequent (45%). In all patients, median rwEFS was 17.6 months and 5-year rwEFS was 20.9%; median OS was 48.5 months and 5-year OS was 44.9%. 71% of patients had disease recurrence during follow-up; among them, 28% developed locoregional recurrence as the first recurrence event. CONCLUSIONS: Patients with resected, stage II-III NSCLC who received neoadjuvant chemo/chemoradiotherapy have high rates of disease recurrence and poor survival outcomes, highlighting need for more effective treatments to improve survival rates.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Neoadjuvant Therapy , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/mortality , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Lung Neoplasms/mortality , Neoadjuvant Therapy/mortality , Neoadjuvant Therapy/methods , Male , Female , Aged , Retrospective Studies , Aged, 80 and over , Survival Rate , Neoplasm Staging , United States , Pneumonectomy , Treatment Outcome , SEER Program , Follow-Up Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
17.
IEEE J Biomed Health Inform ; 28(7): 3953-3964, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38652609

ABSTRACT

Emotion recognition from electroencephalogram (EEG) signals is a critical domain in biomedical research with applications ranging from mental disorder regulation to human-computer interaction. In this paper, we address two fundamental aspects of EEG emotion recognition: continuous regression of emotional states and discrete classification of emotions. While classification methods have garnered significant attention, regression methods remain relatively under-explored. To bridge this gap, we introduce MASA-TCN, a novel unified model that leverages the spatial learning capabilities of Temporal Convolutional Networks (TCNs) for EEG emotion regression and classification tasks. The key innovation lies in the introduction of a space-aware temporal layer, which empowers TCN to capture spatial relationships among EEG electrodes, enhancing its ability to discern nuanced emotional states. Additionally, we design a multi-anchor block with attentive fusion, enabling the model to adaptively learn dynamic temporal dependencies within the EEG signals. Experiments on two publicly available datasets show that MASA-TCN achieves higher results than the state-of-the-art methods for both EEG emotion regression and classification tasks.


Subject(s)
Electroencephalography , Emotions , Neural Networks, Computer , Signal Processing, Computer-Assisted , Humans , Electroencephalography/methods , Emotions/physiology , Emotions/classification , Algorithms
18.
J Hematol ; 13(1-2): 12-22, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38644985

ABSTRACT

Background: Polycythemia vera (PV) is a myeloproliferative neoplasm. Ropeginterferon alfa-2b is a new-generation polyethylene glycol-conjugated proline-interferon. It is approved for the treatment of PV at a starting dose of 100 µg (50 µg for patients receiving hydroxyurea (HU)) and dose titrations up to 500 µg by 50 µg increments. The study was aimed at assessing its efficacy and safety at a higher starting dose and simpler intra-patient dose escalation. Methods: Forty-nine patients with PV having HU intolerance from major hospitals in China were treated biweekly with an initial dose of 250 µg, followed by 350 µg and 500 µg thereafter if tolerated. Complete hematological response (CHR) was assessed every 12 weeks based on the European LeukemiaNet criteria. The primary endpoint was the CHR rate at week 24. The secondary endpoints included CHR rates at weeks 12, 36 and 52, changes of JAK2V617F allelic burden, time to first CHR, and safety assessments. Results: The CHR rates were 61.2%, 69.4% and 71.4% at weeks 24, 36, and 52, respectively. Mean allele burden of the driver mutation JAK2V617F declined from 58.5% at baseline to 30.1% at 52 weeks. Both CHR and JAK2V617F allele burden reduction showed consistent increases over the 52 weeks of the treatment. Twenty-nine patients (63.0%) achieved partial molecular response (PMR) and two achieved complete molecular response (CMR). The time to CHR was rapid and median time was 5.6 months according to central lab results. The CHRs were durable and median CHR duration time was not reached at week 52. Mean spleen index reduced from 55.6 cm2 at baseline to 50.2 cm2 at week 52. Adverse events (AEs) were mostly mild or moderate. Most common AEs were reversible alanine aminotransferase and aspartate aminotransferase increases, which were not associated with significant elevations in bilirubin levels or jaundice. There were no grade 4 or 5 AEs. Grade 3 AEs were reversible and manageable. Only one AE led to discontinuation. No incidence of thromboembolic events was observed. Conclusion: The 250-350-500 µg dosing regimen was well tolerated and effectively induced CHR and MR and managed spleen size increase. Our findings demonstrate that ropeginterferon alfa-2b at this dosing regimen can provide an effective management of PV and support using this dosing regimen as a treatment option.

19.
Biomed Pharmacother ; 174: 116629, 2024 May.
Article in English | MEDLINE | ID: mdl-38640712

ABSTRACT

Propofol, a commonly used intravenous anesthetic, has demonstrated potential in protecting against myocardial ischemia/reperfusion injury (MIRI) based on preclinical animal studies. However, the clinical benefits of propofol in this context are subject to debate. We conducted a systematic search across eight databases to identify all relevant animal studies investigating the preventive effects of propofol on MIRI until October 30, 2023. We assessed the methodological quality of the included studies using SYRCLE's bias risk tool. Statistical analysis was performed using STATA 15.1. The primary outcome measures analyzed in this study were myocardial infarct size (IS) and myocardial injury biomarkers. This study presents a comprehensive analysis of 48 relevant animal studies investigating propofol's preventive effects on MIRI. Propofol administration demonstrated a reduction in myocardial IS and decreased levels of myocardial injury biomarkers (CK-MB, LDH, cTnI). Moreover, propofol improved myocardial function parameters (+dp/dtmax, -dP/dtmax, LVEF, LVFS), exhibited favorable effects on inflammatory markers (IL-6, TNF-α) and oxidative stress markers (SOD, MDA), and reduced myocardial cell apoptotic index (AI). These findings suggest propofol exerts cardioprotective effects by reducing myocardial injury, decreasing infarct size, and improving heart function. However, the absence of animal models that accurately represent comorbidities such as aging and hypertension, as well as inconsistent administration methods that align with clinical practice, may hinder its clinical translation. Further robust investigations are required to validate these findings, elucidate the underlying mechanisms of propofol, and facilitate its potential translation into clinical practice.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Propofol , Propofol/pharmacology , Propofol/therapeutic use , Animals , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Oxidative Stress/drug effects , Biomarkers/metabolism , Anesthetics, Intravenous/pharmacology , Humans , Apoptosis/drug effects
20.
Heliyon ; 10(6): e27733, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38545177

ABSTRACT

Extrachromosomal DNAs (ecDNAs) are a pervasive feature found in cancer and contain oncogenes and their corresponding regulatory elements. Their unique structural properties allow a rapid amplification of oncogenes and alter chromatin accessibility, leading to tumorigenesis and malignant development. The uneven segregation of ecDNA during cell division enhances intercellular genetic heterogeneity, which contributes to tumor evolution that might trigger drug resistance and chemotherapy tolerance. In addition, ecDNA has the ability to integrate into or detach from chromosomal DNA, such progress results into structural alterations and genomic rearrangements within cancer cells. Recent advances in multi-omics analysis revealing the genomic and epigenetic characteristics of ecDNA are anticipated to make valuable contributions to the development of precision cancer therapy. Herein, we conclud the mechanisms of ecDNA generation and the homeostasis of its dynamic structure. In addition to the latest techniques in ecDNA research including multi-omics analysis and biochemical validation methods, we also discuss the role of ecDNA in tumor development and treatment, especially in drug resistance, and future challenges of ecDNA in cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...