Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.350
Filter
1.
bioRxiv ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39071279

ABSTRACT

Maintaining genome integrity is an essential and challenging process. RAD51 recombinase, the central player of several crucial processes in repairing and protecting genome integrity, forms filaments on DNA. RAD51 filaments are tightly regulated. One of these regulators is FIGNL1, that prevents persistent RAD51 foci post-damage and genotoxic chromatin association in cells. The cryogenic electron microscopy structure of FIGNL1 in complex with RAD51 reveals that the FIGNL1 forms a non-planar hexamer and RAD51 N-terminus is enclosed in the FIGNL1 hexamer pore. Mutations in pore loop or catalytic residues of FIGNL1 render it defective in filament disassembly and are lethal in mouse embryonic stem cells. Our study reveals a unique mechanism for removing RAD51 from DNA and provides the molecular basis for FIGNL1 in maintaining genome stability.

2.
Article in English | MEDLINE | ID: mdl-39067046

ABSTRACT

OBJECTIVES: To investigate the ultrasound (US) characteristics of metastatic malignancies (MM) in the major salivary glands and to assess the diagnostic value of the close relationship with the glandular capsule in identifying MM. METHODS: From January 2016 and April 2022, 122 patients with major salivary gland malignancies, including 20 patients with MM and 102 patients with primary malignancies (PM) confirmed by histopathological examination, were enrolled in this study. Their clinicopathologic and US data were recorded and analyzed. The diagnostic performance of the close relationship with the glandular capsule for differentiating MM from PM was analyzed. RESULTS: The mean age of MM were older than that of PM (59.50 ± 14.57 vs. 49.96 ± 15.73, p = 0.013). Compared with PM patients, MM were associated with a higher prevalence of local pain symptoms (p = 0.007) and abnormal facial nerve function (p < 0.001). MM were also more frequently characterized by unclear borders, rough margins, irregular shapes, heterogeneous internal echos, absence of cystic areas, presence of calcifications, close relationship with the glandular capsule, and US-reported positive cervical lymph nodes (all p < 0.05). The close relationship with the glandular capsule showed to be a good indicator in distinguishing between MM and PM, with an area under the receiver operating characteristic curve of 0.863, a sensitivity of 100%, a specificity of 72.5%, and an accuracy of 92.2%. Positive and negative predictive were calculated at 41.7% and 100%, respectively. CONCLUSIONS: The US finding of a close relationship with the glandular capsule is a highly sensitive diagnostic indicator for MM. Following this finding, US-guided needle biopsy should be recommended to further confirm the diagnosis.

3.
Nano Lett ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073854

ABSTRACT

Efficient utilization of solar energy for photocatalytic applications, particularly in the infrared spectrum, is crucial for addressing environmental challenges and energy scarcity. Herein we present a general strategy for constructing efficient infrared-driven photocatalysts in a metal/semiconductor heterojunction with Ohmic contact, where metals with low work function as the infrared-light absorber and semiconductors with electron storage ability can overcome the unfavorable electron flowback. Taking the NixB/MO2 (M = Ce, Ti, Sn, Ge, Zr, etc.) heterojunction as an example, both experimental and theoretical investigations reveal that the formation of an Ohmic contact facilitates the transfer of hot electrons from NixB to MO2, which are stored by the ion redox pairs for the variable valence character of M. As expected, the heterojunction exhibits remarkable photocatalytic activity under infrared light (λ ≥ 800 nm), as evidenced by the efficient photofixation of CO2 to high-value-added cyclic carbonates. This study offers a general platform for designing infrared-light-driven photocatalysts.

4.
Biosensors (Basel) ; 14(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39056604

ABSTRACT

Dopamine (DA), ascorbic acid (AA), and uric acid (UA) are crucial neurochemicals, and their abnormal levels are involved in various neurological disorders. While electrodes for their detection have been developed, achieving the sensitivity required for in vivo applications remains a challenge. In this study, we proposed a synthetic Au24Cd nanoenzyme (ACNE) that significantly enhanced the electrochemical performance of metal electrodes. ACNE-modified electrodes demonstrated a remarkable 10-fold reduction in impedance compared to silver microelectrodes. Furthermore, we validated their excellent electrocatalytic activity and sensitivity using five electrochemical detection methods, including cyclic voltammetry, differential pulse voltammetry, square-wave pulse voltammetry, normal pulse voltammetry, and linear scanning voltammetry. Importantly, the stability of gold microelectrodes (Au MEs) modified with ACNEs was significantly improved, exhibiting a 30-fold enhancement compared to Au MEs. This improved performance suggests that ACNE functionalization holds great promise for developing micro-biosensors with enhanced sensitivity and stability for detecting small molecules.


Subject(s)
Ascorbic Acid , Biosensing Techniques , Dopamine , Electrochemical Techniques , Gold , Microelectrodes , Uric Acid , Dopamine/analysis , Gold/chemistry , Ascorbic Acid/analysis , Uric Acid/analysis , Silver/chemistry , Cadmium/analysis
5.
Nanomaterials (Basel) ; 14(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39057887

ABSTRACT

AlGaN/GaN high-electron-mobility transistors (HEMTs) are widely used in high-frequency and high-power applications owing to the high two-dimensional electron gas (2DEG) concentration. However, the microscopic origin of the 2DEG remains unclear. This hinders the development of device fabrication technologies, such as threshold voltage modulation, current collapse suppression, and 2DEG concentration enhancement technologies, as well as AlGaN/GaN sensors with very high sensitivity to polar liquids. To clarify the 2DEG microscopic origin, we studied the effects of gas molecules on AlGaN/GaN surfaces through various experiments and first-principles calculations. The results indicated that the adsorption of gas molecules on the AlGaN/GaN surface is an important phenomenon, clarifying the microscopic origin of the 2DEG. This study elucidates the properties of AlGaN/GaN heterojunctions and promotes the development of new fabrication technologies for AlGaN/GaN devices.

6.
J Am Chem Soc ; 146(29): 20414-20424, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38982611

ABSTRACT

The structural dynamics of artificial assemblies, in aspects such as molecular recognition and structural transformation, provide us with a blueprint to achieve bioinspired applications. Here, we describe the assembly of redox-switchable chiral metal-organic cages Λ8/Δ8-[Pd6(CoIIL3)8]28+ and Λ8/Δ8-[Pd6(CoIIIL3)8]36+. These isomeric cages demonstrate an on-off chirality logic gate controlled by their chemical and stereostructural dynamics tunable through redox transitions between the labile CoII-state and static CoIII-state with a distinct Cotton effect. The transition between different states is enabled by a reversible redox process and chiral recognition originating in the tris-chelate Co-centers. All cages in two states are thoroughly characterized by NMR, ESI-MS, CV, CD, and X-ray crystallographic analysis, which clarify their redox-switching behaviors upon chemical reduction/oxidation. The stereochemical lability of the CoII-center endows the Λ8/Δ8-CoII-cages with efficient chiral-induction by enantiomeric guests, leading to enantiomeric isomerization to switch between Λ8/Δ8-CoII-cages, which can be stabilized by oxidation to their chemically inert forms of Λ8/Δ8-CoIII-cages. Kinetic studies reveal that the isomerization rate of the Δ8-CoIII-cage is at least an order of magnitude slower than that of the Δ8-CoII-cage even at an elevated temperature, while its activation energy is 16 kcal mol-1 higher than that of the CoII-cage.

7.
Transplant Proc ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981763

ABSTRACT

BACKGROUND: Cellular therapy has emerged as a promising strategy to minimize the use of conventional immunosuppressive drugs and ultimately induce long-term graft survival. Myeloid-derived suppressor cells (MDSCs) can be used for immunosuppressive treatment of solid organ transplants. METHODS: Granular macrophage colony-stimulating factor (GM-CSF) and bexarotene, an X receptor-selective retinoid, were used for in vitro MDSC induction. Cell phenotypes were detected using flow cytometry, while mRNA was detected via real-time PCR. A mouse skin transplantation model was used to verify the inhibitory effects of this treatment. RESULTS: The combination of GM-CSF and bexarotene-induced MDSC differentiation. MDSCs induce immune tolerance by inhibiting T-cell proliferation, influencing cytokine secretion, and inducing T-cell transformation into Treg cells. Combination treatment significantly up-regulated Arg-1 expression in MDSCs. The Arg-1 inhibitor nor-NOHA neutralized the immunosuppressive activity of MDSCs, suggesting the involvement of Arg-1 in MDSC-mediated immunosuppression. GM-CSF and bexarotene-induced MDSCs prolong graft survival in mouse skin transplants, exhibiting in vivo immunosuppressive effects. CONCLUSIONS: A new method for inducing MDSCs is presented. The combination of GM-CSF and bexarotene induces MDSCs with remarkable regulatory functions. Adoptive transfer of the induced MDSCs extended allograft survival. These results suggest that MDSCs can potentially be used in future clinical transplants to inhibit rejection, reduce adverse events, and induce operative tolerance.

8.
Sci Rep ; 14(1): 16040, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992087

ABSTRACT

As a new product of rapid urbanization, the sprawl of urban construction land can objectively reflect urban land use efficiency, which is of great significance to China's new urban construction. This study aimed to summarize the expansion patterns and utilization efficiency of urban construction land in China from the perspectives of the status, speed and trends of expansion, and to uncover the key factors that lead to the differential distribution of the expansion of construction land. It can also provide land management experience for other countries with rapid expansion of construction land. The results show the following. (1) The expansion of China's construction land presents a "point-line-plane" pattern of evolution, forming changing stages of point-like aggregation, linear series and planar spread. (2) China's construction land shows the characteristics of disorderly spread, a low utilization rate and low output efficiency. The speed of expansion presents clear characteristics of being high in the east and low in the west, mostly concentrated in the Yangtze River Delta, Pearl River Delta and the Beijing-Tianjin-Hebei urban agglomeration. Shanghai, Beijing, Shenzhen and Guangzhou have the highest intensity of construction land use. In Shandong Peninsula and eastern coastal areas, the intensity of the construction land use is generally high. In Xinjiang and Xizang, the intensity of construction land use is relatively low. (3) The urban economic level, population size, industrial structure, foreign investment and land policies have significant effects on the spatial distribution of the expansion of construction land.

9.
Lancet Reg Health West Pac ; 48: 101122, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38993541

ABSTRACT

Background: Furmonertinib showed superior efficacy compared with gefitinib as first-line therapy in patients with epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC) in the FURLONG study. Here we present prespecified secondary endpoints of patient-reported outcomes (PRO). Methods: In this multicentre, double-blind, double-dummy, randomised phase 3 study, patients were 1:1 randomly assigned to receive furmonertinib 80 mg once daily or gefitinib 250 mg once daily. PROs assessed by the European Organization for Research and Treatment of Cancer Quality-of-Life Questionnaire Core 30 and Quality-of-Life Questionnaire Lung Cancer 13 were analysed using a mixed model for repeated measures and time-to-event analyses. A difference in score of 10 points or more was deemed clinically relevant. Findings: Three hundred and fifty-seven patients (furmonertinib group, n = 178; gefitinib group, n = 179) received at least one dose of the study drug, all of whom completed at least one PRO assessment. Statistically significant difference of overall score changes from baseline favoured furmonertinib in physical functioning (between-group difference 2.14 [95% CI 0.25-4.04], p = 0.027), nausea/vomiting (-1.56 [95% CI -2.62 to -0.49], p = 0.004), appetite loss (-2.24 [95% CI -4.26 to -0.23], p = 0.029), diarrhoea (-3.36 [95% CI -5.19 to -1.54], p < 0.001), alopecia (-2.62 [95% CI -4.54 to -0.71], p = 0.007), and pain in other parts (-4.55 [95% CI -7.37 to -1.74], p = 0.002), but not reached clinical relevance. Time to deterioration in physical functioning (hazard ratio 0.63 [95% CI 0.42-0.94], p = 0.021), cognitive functioning (0.73 [95% CI 0.54-0.98], p = 0.034), nausea/vomiting (0.64 [95% CI 0.41-0.99], p = 0.042), appetite loss (0.63 [95% CI 0.43-0.92], p = 0.016), diarrhoea (0.63 [95% CI 0.46-0.85], p = 0.002), dyspnoea (0.72 [95% CI 0.53-0.98], p = 0.034), cough (0.67 [95% CI 0.44-1.00], p = 0.049), dysphagia (0.54 [95% CI 0.35-0.83], p = 0.004), and alopecia (0.62 [95% CI 0.42-0.90], p = 0.012) was longer with furmonertinib versus gefitinib. Interpretation: In patients with locally advanced or metastatic EGFR mutation-positive NSCLC, furmonertinib showed improved scores and delayed deterioration in several functioning and symptoms compared to gefitinib. Funding: Shanghai Allist Pharmaceutical Technology Co., Ltd and the National Science and Technology Major Project for Key New Drug Development (2017ZX09304015).

10.
Microbiol Spectr ; : e0397923, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980018

ABSTRACT

Antimicrobial resistance has become a growing public health threat in recent years. Klebsiella pneumoniae is one of the priority pathogens listed by the World Health Organization. Antimicrobial peptides are considered promising alternatives to antibiotics due to their broad-spectrum antibacterial activity and low resistance. In this study, we investigated the antibacterial activity of antimicrobial peptide A20L against K. pneumoniae. In vitro antibacterial activity of A20L against K. pneumoniae was demonstrated by broth microdilution method. We confirmed the in vivo efficacy of A20L by Galleria mellonella infection model. In addition, we found that A20L also had certain antibiofilm activity by crystal violet staining. We also evaluated the safety and stability of A20L, and the results revealed that at a concentration of ≤128 µg/mL, A20L exhibited negligible toxicity to RAW264.7 cells and no substantial toxicity to G. mellonella. A20L was stable at different temperatures and with low concentration of serum [5% fetal bovine serum (FBS)]; however, Ca2+, Mg2+, and high serum concentrations reduced the antibacterial activity of A20L. Scanning electron microscope (SEM) and membrane permeability tests revealed that A20L may exhibit antibacterial action by damaging bacterial cell membranes and increasing the permeability of outer membrane. Taken together, our results suggest that A20L has significant development potential as a therapeutic antibiotic alternative, which provides ideas for the treatment of K. pneumoniae infection. IMPORTANCE: A20L showed antibacterial and anti-infective efficacy in vitro and in vivo against Klebsiella pneumoniae. It can have an antibacterial effect by disrupting the integrity of cell membranes. A20L displayed anti-biofilm and anti-inflammatory activity against carbapenem-resistant K. pneumoniae and certain application potential in vivo, which provides a new idea for the clinical treatment of biofilm-associated infections.

11.
J Imaging Inform Med ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020156

ABSTRACT

Meniscal injury is a common cause of knee joint pain and a precursor to knee osteoarthritis (KOA). The purpose of this study is to develop an automatic pipeline for meniscal injury classification and localization using fully and weakly supervised networks based on MRI images. In this retrospective study, data were from the osteoarthritis initiative (OAI). The MR images were reconstructed using a sagittal intermediate-weighted fat-suppressed turbo spin-echo sequence. (1) We used 130 knees from the OAI to develop the LGSA-UNet model which fuses the features of adjacent slices and adjusts the blocks in Siam to enable the central slice to obtain rich contextual information. (2) One thousand seven hundred and fifty-six knees from the OAI were included to establish segmentation and classification models. The segmentation model achieved a DICE coefficient ranging from 0.84 to 0.93. The AUC values ranged from 0.85 to 0.95 in the binary models. The accuracy for the three types of menisci (normal, tear, and maceration) ranged from 0.60 to 0.88. Furthermore, 206 knees from the orthopedic hospital were used as an external validation data set to evaluate the performance of the model. The segmentation and classification models still performed well on the external validation set. To compare the diagnostic performances between the deep learning (DL) models and radiologists, the external validation sets were sent to two radiologists. The binary classification model outperformed the diagnostic performance of the junior radiologist (0.82-0.87 versus 0.74-0.88). This study highlights the potential of DL in knee meniscus segmentation and injury classification which can help improve diagnostic efficiency.

12.
ACS Appl Mater Interfaces ; 16(28): 36047-36062, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38978477

ABSTRACT

Sepsis, a life-threatening condition caused by a dysregulated immune response to infection, leads to systemic inflammation, immune dysfunction, and multiorgan damage. Various oxidoreductases play a very important role in balancing oxidative stress and modulating the immune response, but they are stored inconveniently, environmentally unstable, and expensive. Herein, we develop multifunctional artificial enzymes, CeO2 and Au/CeO2 nanozymes, exhibiting five distinct enzyme-like activities, namely, superoxide dismutase, catalase, glutathione peroxidase, peroxidase, and oxidase. These artificial enzymes have been used for the biocatalytic treatment of sepsis via inhibiting inflammation and modulating immune responses. These nanozymes significantly reduce reactive oxygen species and proinflammatory cytokines, achieving multiorgan protection. Notably, CeO2 and Au/CeO2 nanozymes with enzyme-mimicking activities can be particularly effective in restoring immunosuppression and maintaining homeostasis. The redox nanozyme offers a promising dual-protective strategy against sepsis-induced inflammation and organ dysfunction, paving the way for biocatalytic-based immunotherapies for sepsis and related inflammatory diseases.


Subject(s)
Cerium , Gold , Inflammation , Sepsis , Sepsis/drug therapy , Sepsis/immunology , Animals , Inflammation/drug therapy , Inflammation/immunology , Gold/chemistry , Cerium/chemistry , Cerium/therapeutic use , Mice , Humans , Reactive Oxygen Species/metabolism , Catalase/metabolism , Catalase/chemistry , Cytokines/metabolism
13.
Med Biol Eng Comput ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017831

ABSTRACT

The segmentation of airway from computed tomography (CT) images plays a vital role in pulmonary disease diagnosis, evaluation, surgical planning, and treatment. Nevertheless, it is still challenging for current methods to handle distal thin and low-contrast airways, leading to mis-segmentation issues. This paper proposes a detail-sensitive 3D-UNet (DS-3D-UNet) that incorporates two new modules into 3D-UNet to segment airways accurately from CT images. The feature recalibration module is designed to give more attention to the foreground airway features through a new attention mechanism. The detail extractor module aims to restore multi-scale detailed features by fusion of features at different levels. Extensive experiments were conducted on the ATM'22 challenge dataset composed of 300 CT scans with airway annotations to evaluate its performance. Quantitative comparisons prove that the proposed model achieves the best performance in terms of Dice similarity coefficient (92.6%) and Intersection over Union (86.3%), outperforming other state-of-the-art methods. Qualitative comparisons further exhibit the superior performance of our method in segmenting thin and confused distal bronchi. The proposed model could provide important references for the diagnosis and treatment of pulmonary diseases, holding promising prospects in the field of digital medicine. Codes are available at https://github.com/nighlevil/DS-3D-UNet/tree/master .

14.
J Stroke Cerebrovasc Dis ; : 107882, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038628

ABSTRACT

BACKGROUND AND AIM: The association of Lipoprotein(a) (Lp[a]) with recurrent ischemic events in stented patients remains uncertain. So, this research aimed to investigate the impact of elevated Lp(a) levels on the occurrence of ischemic events in this specific patient population. METHODS: Totally 553 patients who underwent intracranial or extracranial artery stent implantation were included. Baseline data were collected and postoperative ischemic outcomes were followed up. Cox regression analysis was used to investigate the association between Lp(a) and outcomes, while accounting for confounding factors. Finally, we established prediction models based on nomogram. RESULTS: Of total 553 patients, a number of 107 (19.3%) experienced outcomes. These included 46 cases (34.7%) in group with elevated Lp(a) levels (>30 mg/dL) and 61 cases (18.4%) in non-elevated group (χ2=6.343, p=0.012). The group with elevated Lp(a) was 1.811 times more likely to experience ischemic events than the non-elevated group, each 1 mg/dL increase in Lp(a) resulted in a 1.008-fold increase in the recurrence rate of ischemic events. In addition, sex (male), previous history of coronary heart disease, decreased albumin, elevated very low density lipoprotein cholesterol and poorly controlled risk factors (including blood pressure and blood sugar) were also associated with a high risk of recurrent ischemic events after stent implantation. CONCLUSION: Lp(a) elevation was a significant risk factor for ischemic events in symptomatic patients who underwent intracranial or extracranial artery stenting.

15.
Chem Commun (Camb) ; 60(58): 7455-7458, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38946627

ABSTRACT

MnCo spinel oxide catalysts were successfully synthesized by the calcination of bimetallic Mn/Co-MOFs as sacrificial templates. The derived catalysts exhibited optimal catalytic activity, reusability and thermal stability for toluene oxidation, which was ascribed to their large specific surface area, higher number of octahedral metal ions and the weakest metal-oxygen bonds.

16.
ISME Commun ; 4(1): ycae087, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39011280

ABSTRACT

The shift between photoautotrophic and phagotrophic strategies in mixoplankton significantly impacts the planktonic food webs and biogeochemical cycling. Considering the projected global warming, studying how temperature impacts this shift is crucial. Here, we combined the transcriptome of in-lab cultures (mixotrophic dinoflagellate Lepidodinium sp.) and the metatranscriptome dataset of the global ocean to investigate the mechanisms underlying the shift of trophic strategies and its relationship with increasing temperatures. Our results showed that phagocytosis-related pathways, including focal adhesion, regulation of actin cytoskeleton, and oxidative phosphorylation, were significantly stimulated in Lepidodinium sp. when cryptophyte prey were added. We further compared the expression profiles of photosynthesis and phagocytosis genes in Lepidodinium sp. in the global sunlit ocean. Our results indicated that Lepidodinium sp. became more phagotrophic with increasing temperatures when the ambient chlorophyll concentration was >0.3 mg.m-3 (~20.58% of the ocean surface) but became more photoautotrophic with increasing temperatures when the chlorophyll concentration was between 0.2 and 0.3 mg.m-3 (~11.47% of the ocean surface). Overall, we emphasized the crucial role of phagocytosis in phago-mixotrophy and suggested that the expression profile of phagocytosis genes can be a molecular marker to target the phagotrophic activity of mixoplankton in situ.

17.
Front Public Health ; 12: 1342313, 2024.
Article in English | MEDLINE | ID: mdl-38962766

ABSTRACT

Background: Studies have shown that gut dysbiosis contributes to the pathophysiology of type 2 diabetes mellitus (T2DM). Identifying specific gut microbiota dysbiosis may provide insight into the pathogenesis of T2DM. Purpose: This study investigated the causal relationship between gut microbiota and T2DM using meta-analysis and Mendelian randomization (MR). Methods: In the first part, we searched for literature on gut microbiota and T2DM, and conducted a meta-analysis. We observed differences in glycosylated hemoglobin and fasting blood glucose levels in both groups. Second, we obtained GWAS data from genome-wide association study database 19 (GWAS). We used two-sample MR analysis to verify the forward and reverse causal associations between gut microbiota and T2DM. Additionally, we selected the European GWAS data from the European Bioinformatics Institute (EBI) as a validation set for external validation of the MR analysis. In the third part, we aimed to clarify which gut microbiota contribute to the degree of causal association between group disorders and T2DM through multivariate MR analysis and Bayesian model averaging (MR-BMA). Results: 1. According to the meta-analysis results, the glycated hemoglobin concentration in the gut probiotic intervention group was significantly lower than in the control group. Following treatment, fasting blood glucose levels in the intervention group were significantly lower than those in the control group. 2. The results of two samples MR analysis revealed that there were causal relationships between six gut microbiota and T2DM. Genus Haemophilus and order Pasteurellaceae were negatively correlated with T2DM. Genus Actinomycetes, class Melanobacteria and genus Lactobacillus were positively correlated. Reverse MR analysis demonstrated that T2DM and gut microbiota did not have any reverse causal relationship. The external validation data set showed a causal relationship between gut microbiota and T2DM. 3. Multivariate MR analysis and MR-BMA results showed that the independent genus Haemophilus collection had the largest PP. Conclusion: Our research results suggest that gut microbiota is closely related to T2DM pathogenesis. The results of further MR research and an analysis of the prediction model indicate that a variety of gut microbiota disorders, including genus Haemophilus, are causally related to the development of T2DM. The findings of this study may provide some insight into the diagnosis and treatment of T2DM. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Genome-Wide Association Study , Mendelian Randomization Analysis , Diabetes Mellitus, Type 2/microbiology , Humans , Dysbiosis , Blood Glucose/analysis , Glycated Hemoglobin/analysis , Probiotics
18.
J Am Chem Soc ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042557

ABSTRACT

Achieving high guest loading and multiguest-binding capacity holds crucial significance for advancement in separation, catalysis, and drug delivery with synthetic receptors; however, it remains a challenging bottleneck in characterization of high-stoichiometry guest-binding events. Herein, we describe a large-sized coordination cage (MOC-70-Zn8Pd6) possessing 12 peripheral pockets capable of accommodating multiple guests and a high-resolution electrospray ionization mass spectrometry (HR-ESI-MS)-based method to understand the solution host-guest chemistry. A diverse range of bulky guests, varying from drug molecules to rigid fullerenes as well as flexible host molecules of crown ethers and calixarenes, could be loaded into open pockets with high capacities. Notably, these hollow cage pockets provide multisites to capture different guests, showing heteroguest coloading behavior to capture binary, ternary, or even quaternary guests. Moreover, a pair of commercially applied drugs for the combination therapy of chronic lymphocytic leukemia (CLL) has been tested, highlighting its potential in multidrug delivery for combined treatment.

19.
Adv Sci (Weinh) ; : e2401905, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888519

ABSTRACT

Bacteria can be utilized for cancer therapy owing to their preferential colonization at tumor sites. However, unmodified non-pathogenic bacteria carry potential risks due to their non-specific targeting effects, and their anti-tumor activity is limited when used as monotherapy. In this study, a biohybrid-engineered bacterial system comprising non-pathogenic MG1655 bacteria modified with CDH17 nanobodies on their surface and conjugated with photosensitizer croconium (CR) molecules is developed. The resultant biohybrid bacteria can efficiently home to CDH17-positive tumors, including gastric, pancreatic, and colorectal cancers, and significantly suppress tumor growth upon irradiation. More importantly, biohybrid bacteria-mediated photothermal therapy (PTT) induced abundant macrophage infiltration in a syngeneic murine colorectal model. Further, that the STING pathway is activated in tumor macrophages by the released bacterial nucleic acid after PTT is revealed, leading to the production of type I interferons. The addition of CD47 nanobody but not PD-1 antibody to the PTT regimen can eradicate the tumors and extend survival. This results indicate that bacteria endowed with tumor-specific selectivity and coupled with photothermal payloads can serve as an innovative strategy for low-immunogenicity cancers. This strategy can potentially reprogram the tumor microenvironment by inducing macrophage infiltration and enhancing the efficacy of immunotherapy targeting macrophages.

20.
Am J Transl Res ; 16(5): 1779-1789, 2024.
Article in English | MEDLINE | ID: mdl-38883385

ABSTRACT

OBJECTIVE: To compare the surgical metrics, improvement of functional scores, and clinical efficacy of percutaneous endoscopic transforaminal discectomy (PETD) and percutaneous endoscopic interlaminar discectomy (PEID) and to analyze the independent risk factors affecting the therapeutic efficacy of PETD. METHODS: The clinical data of LDH (lumbar disc herniation) patients who underwent treatment in Shaanxi Provincial Nuclear Industry 215 Hospital from May 2020 to May 2022 were retrospectively collected, including 70 PEID cases and 74 PETD cases. The two groups were compared in terms of surgical indexes, such as operation time and bleeding volume, as well as changes in functional scores, such as preoperative and postoperative Visual Analogue Scale (VAS) scores and Oswestry Disability Index (ODI). The clinical efficacy was evaluated according to the Macnab criteria, and logistic regression analysis was performed to determine the independent influencing factors of the treatment efficacy of PETD. RESULTS: The differences between the two surgical groups were statistically significant in terms of operation time (P<0.001), bleeding (P=0.005), and C-arm X-ray exposure times (P<0.001), and the above indexes were higher in the PETD group; however, there were no statistical differences in terms of improvement in functional scores (P>0.05) and clinical efficacy (P>0.05) between the two groups. BMI≥25 kg/m2 (P=0.001), severe disc degeneration (P=0.003), and operation time ≥60 min (P=0.003), severe disc degeneration (P=0.003), and operation time ≥60 min (P=0.036) were independent risk factors for the outcome of PETD. CONCLUSION: The clinical effectiveness of PEID and PETD in treating LDH is comparable, and each has its own advantages. While PETD is more technically demanding, it does not yield superior results. Obesity, severe disc degeneration, and prolonged surgery are risk factors for the treatment efficacy of PETD.

SELECTION OF CITATIONS
SEARCH DETAIL
...