Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.722
Filter
1.
Neural Regen Res ; 20(1): 224-233, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-38767487

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202501000-00030/figure1/v/2024-05-14T021156Z/r/image-tiff Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery. Our previous in vitro study demonstrated that exosomes/small extracellular vesicles (sEVs) isolated from cerebral endothelial cells (CEC-sEVs) of ischemic brain promote axonal growth of embryonic cortical neurons and that microRNA 27a (miR-27a) is an elevated miRNA in ischemic CEC-sEVs. In the present study, we investigated whether normal CEC-sEVs engineered to enrich their levels of miR-27a (27a-sEVs) further enhance axonal growth and improve neurological outcomes after ischemic stroke when compared with treatment with non-engineered CEC-sEVs. 27a-sEVs were isolated from the conditioned medium of healthy mouse CECs transfected with a lentiviral miR-27a expression vector. Small EVs isolated from CECs transfected with a scramble vector (Scra-sEVs) were used as a control. Adult male mice were subjected to permanent middle cerebral artery occlusion and then were randomly treated with 27a-sEVs or Scra-sEVs. An array of behavior assays was used to measure neurological function. Compared with treatment of ischemic stroke with Scra-sEVs, treatment with 27a-sEVs significantly augmented axons and spines in the peri-infarct zone and in the corticospinal tract of the spinal grey matter of the denervated side, and significantly improved neurological outcomes. In vitro studies demonstrated that CEC-sEVs carrying reduced miR-27a abolished 27a-sEV-augmented axonal growth. Ultrastructural analysis revealed that 27a-sEVs systemically administered preferentially localized to the pre-synaptic active zone, while quantitative reverse transcription-polymerase chain reaction and Western Blot analysis showed elevated miR-27a, and reduced axonal inhibitory proteins Semaphorin 6A and Ras Homolog Family Member A in the peri-infarct zone. Blockage of the Clathrin-dependent endocytosis pathway substantially reduced neuronal internalization of 27a-sEVs. Our data provide evidence that 27a-sEVs have a therapeutic effect on stroke recovery by promoting axonal remodeling and improving neurological outcomes. Our findings also suggest that suppression of axonal inhibitory proteins such as Semaphorin 6A may contribute to the beneficial effect of 27a-sEVs on axonal remodeling.

2.
Microbiome ; 12(1): 120, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956705

ABSTRACT

BACKGROUND: Functional redundancy (FR) is widely present, but there is no consensus on its formation process and influencing factors. Taxonomically distinct microorganisms possessing genes for the same function in a community lead to within-community FR, and distinct assemblies of microorganisms in different communities playing the same functional roles are termed between-community FR. We proposed two formulas to respectively quantify the degree of functional redundancy within and between communities and analyzed the FR degrees of carbohydrate degradation functions in global environment samples using the genetic information of glycoside hydrolases (GHs) encoded by prokaryotes. RESULTS: Our results revealed that GHs are each encoded by multiple taxonomically distinct prokaryotes within a community, and the enzyme-encoding prokaryotes are further distinct between almost any community pairs. The within- and between-FR degrees are primarily affected by the alpha and beta community diversities, respectively, and are also affected by environmental factors (e.g., pH, temperature, and salinity). The FR degree of the prokaryotic community is determined by deterministic factors. CONCLUSIONS: We conclude that the functional redundancy of GHs is a stabilized community characteristic. This study helps to determine the FR formation process and influencing factors and provides new insights into the relationships between prokaryotic community biodiversity and ecosystem functions. Video Abstract.


Subject(s)
Bacteria , Biodiversity , Glycoside Hydrolases , Polysaccharides , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Polysaccharides/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Ecosystem , Microbiota , Prokaryotic Cells/metabolism , Prokaryotic Cells/classification , Phylogeny , Hydrogen-Ion Concentration
3.
Ecol Evol ; 14(7): e11671, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952654

ABSTRACT

Despite their crucial role in determining the fate of seeds, the type and breaking mode of seed dormancy in peatland plants in temperate Asia with a continental monsoon climate are rarely known. Fifteen common peatland plant species were used to test their seed germination response to various dormancy-breaking treatments, including dry storage (D), gibberellin acid soaking (GA), cold stratification (CS), warm followed cold stratification (WCS), GA soaking + cold stratification (GA + CS) and GA soaking + warm followed cold stratification (GA + WCS). Germination experiment, viability and imbibition test, and morphological observation of embryos were conducted. Of the 15 species, nine showed physiological dormancy (PD), with non-deep PD being the dominant type. Four species, Angelica pubescens, Cicuta virosa, Iris laevigata, and Iris setosa exhibited morphophysiological dormancy. Two species, Lycopus uniflorus and Spiraea salicifolia, demonstrated nondormancy. Overall, the effect hierarchy of dormancy-breaking is: CS > GA > WCS > GA + CS > D > GA + WCS. Principal component analysis demonstrated that seed traits, including embryo length: seed length ratio, seed size, and monocot/eudicot divergence, are more likely to influence seed dormancy than environmental factors. Our study suggests that nearly 90% of the tested peatland plant species in the Changbai Mountains demonstrated seed dormancy, and seed traits (e.g. embryo-to-seed ratio and seed size) and abiotic environmental factors (e.g. pH and temperature seasonality) are related to germination behavior, suggesting seed dormancy being a common adaptation strategy for the peatland plants in the temperate montane environment.

4.
ArXiv ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38947918

ABSTRACT

An optimization-based image reconstruction algorithm is developed for contrast enhanced digital breast tomosynthesis (DBT) using dual-energy scanning. The algorithm minimizes directional total variation (TV) with a data discrepancy and non-negativity constraints. Iodinated contrast agent (ICA) imaging is performed by reconstructing images from dual-energy DBT data followed by weighted subtraction. Physical DBT data is acquired with a Siemens Mammomat scanner of a structured breast phantom with ICA inserts. Results are shown for both directional TV minimization and filtered back-projection for reference. It is seen that directional TV is able to substantially reduce depth blur for the ICA objects.

5.
J Colloid Interface Sci ; 675: 226-235, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38968639

ABSTRACT

Although Li metal is considered the most potential anode for Li based batteries, the repeatedly large volume variation and low Coulombic efficiency (CE) are still serious challenges for commercial application. Herein, the interconnect closed hollow graphene spheres with electronic-ionic bi-functional conduction network containing Li4.4Sn nanoparticles loaded internally and ß-Li3PS4 solid electrolyte layer coated externally (ß-LPS/SG/Li4.4Sn) is proposed to achieve uniform and dense Li deposition. Density functional theory (DFT) calculation and experimental results show that Li4.4Sn owns larger Li binding energy and lower nucleation overpotential than spherical graphene (SG), thus being able to guide Li traversing and depositing inside the hollow spheres. The Tafel curves, Li+ diffusion activation energy and experimental results reveal that the ß-Li3PS4 coating layer significantly improves the ionic conductivity of the negative skeleton, covers the defect sites on the SG surface, provides continuous ion transmission channels and accelerates Li+ migration rate. The synergy of both can inhibit the formation of dendritic Li and reduce side reaction between freshly deposited lithium and the organic electrolyte. It's found that Li is preferentially deposited within the SG, evenly deposited on the spherical shell surface until it's completely filled to obtain a dense lithium layer without tip effect. As a result, the ß-LPS/SG/Li4.4Sn anode exhibits a long life of up to 2800 h, an extremely low overpotential (∼13 mV) and a high CE of 99.8 % after 470 cycles. The LiFePO4-based full cell runs stably with a high capacity retention of 86.93 % after 800 cycles at 1C. It is considered that the novel structure design of Li anode skeleton with electron-ionic bi-functional conduction is a promising direction to construct long-term stable lithium metal anodes.

6.
Braz J Otorhinolaryngol ; 90(5): 101456, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38968750

ABSTRACT

OBJECTIVE: The association between Papillary Thyroid Carcinoma (PTC) and coexistent Hashimoto's Thyroiditis (HT) was controversial. The purpose of this study was to evaluate the presence of HT exerts any influence on the aggressiveness of PTC, and to establish a nomogram for predicting the possibility of aggressiveness in PTC. METHODS: 373 consecutive PTC patients with/without coexistent HT from January 2017 to December 2020 were retrospective reviewed. Patients' clinicopathologic and sonographic characteristics were collected for univariate and multivariate analyses. A nomogram was established based on the risk factors for aggressiveness in PTC. RESULTS: Male (p = 0.001), tumor size >1.0 cm (p = 0.046) and lymph node metastasis (p = 0.018) were negatively associated with PTC coexisted with HT, while it was significantly positively associated with the frequence of multifocality (p = 0.010). Univariate and multivariate analyses suggested that age ≥55 years (p = 0.000), male (p = 0.027), HT (p = 0.017), tumor size >1.0 cm (p = 0.015), multifocality (p = 0.041), distance to capsular ≤0 cm (p = 0.050) and blood flow (Grade I: p = 0.044) were independent risk factors for predicting the aggressiveness in PTC. A nomogram according to these predictors was further developed and validated. The receiver operating characteristic curve (AUC = 0.734 and 0.809 for training and validation cohorts, respectively) and decision curve analyses indicated that the nomogram model was clinically useful. The calibration curve revealed that the nomogram exhibited an excellent consistency. CONCLUSIONS: In this study, the coexistent HT might play a protective role in preventing the proliferation of PTC. Dispensable aggressive treatment may be reduced in PTC by pre-operative identification of sonographic and clinical characteristics and incorporating with the predicted nomogram model.

7.
Biomed Pharmacother ; 177: 117050, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968794

ABSTRACT

Cardiovascular disease (CVD) is a leading cause of death in chronic kidney disease (CKD). Hemodialysis is one of the main treatments for patients with end-stage kidney disease. Epidemiological data has shown that acute myocardial infarction (AMI) accounts for the main reason for death in patients with CKD under hemodialysis therapy. Immune dysfunction and changes in metabolism (including a high level of inflammatory cytokines, a disorder of lipid and mineral ion homeostasis, accumulation of uremic toxins et al.) during CKD can deteriorate stability of atherosclerotic plaque and promote vascular calcification, which are exactly the pathophysiological mechanisms underlying the occurrence of AMI. Meanwhile, the hemodialysis itself also has adverse effects on lipoprotein, the immune system and hemodynamics, which contribute to the high incidence of AMI in these patients. This review aims to summarize the mechanisms and further promising methods of prevention and treatment of AMI in CKD patients undergoing hemodialysis, which can provide an excellent paradigm for exploring the crosstalk between the kidney and cardiovascular system.

8.
Asian J Psychiatr ; 99: 104136, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38986316

ABSTRACT

OBJECTIVE: This study aimed to develop and validate the Chinese Short Version of the Adult ADHD Self-Report Scale (ASRS-CSV), addressing the need for culturally appropriate diagnostic tools for Attention-Deficit Hyperactivity Disorder (ADHD) in the Chinese adult population. METHODS: Utilizing a combination of intergroup difference analysis, factor analysis, and network analysis, we identified core ADHD symptoms pertinent to the Chinese cultural context. The study involved two samples: a vocational and technical school sample (N=1144) and an internet sample (N=1654), comprising adults aged 16-25 years. Reliability, validity, and diagnostic efficacy of the ASRS-CSV were assessed through psychometric testing. RESULTS: The ASRS-CSV demonstrated high internal consistency (Cronbach's alpha > 0.9) and robust convergent validity (AVE > 0.7). The scale's diagnostic cutoff points were optimized, revealing high sensitivity and specificity for ADHD screening. Cross-cultural analysis highlighted differences in core ADHD symptoms between Chinese and Western populations, underscoring the scale's cultural sensitivity. CONCLUSION: The ASRS-CSV is a reliable, valid, and efficient tool for screening ADHD in Chinese adults, reflecting the socio-cultural nuances of ADHD symptomatology. Its development marks a significant advancement in the field of psychiatry, offering a tailored approach for ADHD assessment in China and contributing to the global discourse on cross-cultural psychiatric diagnosis.

9.
Am J Clin Exp Immunol ; 13(3): 105-116, 2024.
Article in English | MEDLINE | ID: mdl-39022790

ABSTRACT

BACKGROUND: Leucine rich pentatricopeptide repeat containing (LRPPRC) protein is a multifunctional protein involved in cell cycle progression and tumor development. However, its prognostic significance and association with immune infiltration in Liver hepatocellular carcinoma (LIHC) remain unclear. METHODS: We utilized transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx) databases of LIHC patients to investigate the potential pro-cancer role of LRPPRC, including differential expression of LRPPRC in LIHC, prognostic value, clinicopathological features, immune cell infiltration relevance and function enrichment analysis. RESULTS: Our findings suggest that LRPPRC is upregulated in LIHC and exhibits correlations with survival, clinical stage, and tumor grade in LIHC patients. Additionally, immune infiltration analysis revealed significant negative correlations between LRPPRC expression and multiple tumor-infiltrating immune cells, including CTLs, DCs, pDCs, B cells, Th17 cells, neutrophils, T cells, Mast cells, Th1 cells, Tregs, and NK cells, whereas a significant positive correlation was observed with infiltration of Th2 cells, T helper cells and Tcms. Furthermore, functional enrichment analysis indicated that LRPPRC may be involved in G2m checkpoint, mitotic spindle, E2f targets, Wnt Beta catenin signaling, spermatogenesis and other processes.

10.
J Cell Commun Signal ; 18(2): e12033, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38946724

ABSTRACT

Liver fibrosis is a persistent damage repair response triggered by various injury factors, which leads to an abnormal accumulation of extracellular matrix within liver tissue samples. The current clinical treatment of liver fibrosis is currently ineffective; therefore, elucidating the mechanism of liver fibrogenesis is of significant importance. Herein, the function and related mechanisms of lncRNA Snhg12 within hepatic fibrosis were investigated. Snhg12 expression was shown to be increased in mouse hepatic fibrotic tissue samples, and Snhg12 knockdown suppressed hepatic pathological injury and down-regulated the expression levels of fibrosis-associated proteins. Mechanistically, Snhg12 played a role in the early activation of mouse hepatic stellate cells (mHSCs) based on bioinformatics analysis, and Snhg12 was positively correlated with Igfbp3 expression. Further experimental results demonstrated that Snhg12 knockdown impeded mHSCs proliferation and activation and also downregulated the protein expression of Igfbp3. Snhg12 could interact with IGFBP3 and boost its protein stability, and overexpression of Igfbp3 partially reversed the inhibition of mHSCsproliferation and activation by the knockdown of Snhg12. In conclusion, LncRNA Snhg12 mediates liver fibrosis by targeting IGFBP3 and promoting its protein stability, thereby promoting mHSC proliferation and activation. Snhg12 has been identified as an underlying target for treating liver fibrosis.

11.
J Am Chem Soc ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961805

ABSTRACT

Visible light-driven pyridoxal radical biocatalysis has emerged as a promising strategy for the stereoselective synthesis of valuable noncanonical amino acids (ncAAs). Previously, the use of well-tailored photoredox catalysts represented the key to enable efficient pyridoxal phosphate (PLP) enzyme-catalyzed radical reactions. Here, we report a PLP-dependent threonine aldolase-catalyzed asymmetric α-C-H alkylation of abundant amino acids using Katritzky pyridinium salts as alkylating agents. The use of engineered threonine aldolases allowed for this redox-neutral radical alkylation to proceed efficiently, giving rise to challenging α-trisubstituted and -tetrasubstituted ncAA products in a protecting-group-free fashion with excellent enantiocontrol. Mechanistically, this enantioselective α-alkylation capitalizes on the unique reactivity of the persistent enzymatic quinonoid intermediate derived from the PLP cofactor and the amino acid substrate to allow for novel radical C-C coupling. Surprisingly, this photobiocatalytic process does not require the use of well-established photoredox catalysts and operates through an unconventional photoinduced radical generation involving a PLP-derived aldimine. The ability to develop photobiocatalytic reactions without relying on classic photocatalysts or photoenzymes opens up new avenues for advancing stereoselective intermolecular radical reactions that are not known in either organic chemistry or enzymology.

12.
Article in English | MEDLINE | ID: mdl-38961845

ABSTRACT

There are diverse pathophysiological mechanisms involved in acute kidney injury (AKI). Among them, overactivity of the renin angiotensin system (RAS) has been described. Angiotensin converting enzyme 2 (ACE2) is a tissue RAS enzyme expressed in the apical border of proximal tubules. Given the important role of ACE2 in the metabolism of Angiotensin II this study was aimed to characterize kidney and urinary ACE2 in amouse model of AKI. Ischemia reperfusion injury (IRI) was induced in C57BL/6 mice by clamping of the left renal artery followed by removal of the right kidney. In kidneys harvested 48 hours after IRI, immunostaining revealed a striking maldistribution of ACE2 including spillage into the tubular lumen and presence of ACE2 positive luminal casts in the medulla. In cortical membranes ACE2 protein and enzymatic activity were both markedly reduced (37±4 vs. 100±6 ACE2/ß-Actin, P=0.0004 and 96±14 vs. 152±6 RFU/µg protein/h P=0.006). In urine, the full-length membrane bound ACE2 protein (100kD) was markedly increased (1120±405 vs. 100±46 ACE2/µg Crea, P=0.04) and casts stained for ACE2 were recovered in the urine sediment. In AKI caused by IRI there is a marked loss of ACE2 from the apical tubular border with deposition of ACE2 positive material in the medulla and increased urinary excretion of the full length-membrane bound ACE2 protein. The deficiency of tubular ACE2 in AKI suggests that provision of this enzyme could have therapeutic applications and that its excretion in the urine may also serve as a diagnostic marker of severe proximal tubular injury.

13.
Int J Colorectal Dis ; 39(1): 108, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008124

ABSTRACT

BACKGROUND AND AIMS: Video-assisted anal fistula treatment (VAAFT) is an innovative surgical approach enabling the direct visualization of the fistula tract structure. This study aims to assess the efficacy of VAAFT in comparison with that of traditional surgical methods and explore potential risk factors contributing to fistula recurrence to provide new recommendations for surgical selection. MATERIALS AND METHODS: Information was collected from 100 patients with complex anal fistula (CAF) in our hospital who underwent surgical treatment from January 2021 to January 2023. We compared the baseline information and surgical outcomes of two groups, analyzed the risk factors for fistula recurrence by using logistic regression analysis, and conducted further exploration by using the body mass index. RESULTS: Equal numbers of patients underwent VAAFT and traditional surgeries, and no significant differences in baseline information were observed. Patients who received VAAFT experienced less intraoperative bleeding (15.5 (14.0-20.0) vs. 32.0 (25.0-36.0)), shorter hospital stays (2.0 (2.0-2.5) vs. 3.0 (3.0-3.5)), reduced postoperative pain and wound discharge, but longer operative times (43.3 ± 6.9 vs. 35.0 (31.5-40.0)) compared with patients who underwent traditional surgeries. No significant differences in recurrence rates were found three and six months after operation (the p-values were 0.790 and 0.806, respectively). However, the Wexner scores of the VAAFT group were significantly low in the first follow-up (0 (0-1.0) vs. 2.0 (1.0-2.0)). Postoperative recurrence of fistulas may be associated with obesity (p-value = 0.040), especially in patients undergoing traditional surgeries (p-value = 0.036). CONCLUSION: VAAFT offers advantages, such as less pain, less trauma, and faster recovery, compared with traditional surgical treatment. Obese patients with CAF are prone to recurrence, and we recommend that they undergo VAAFT treatment rather than traditional surgeries.


Subject(s)
Obesity , Rectal Fistula , Recurrence , Video-Assisted Surgery , Humans , Rectal Fistula/surgery , Rectal Fistula/etiology , Obesity/complications , Obesity/surgery , Female , Male , Treatment Outcome , Middle Aged , Adult , Risk Factors , Body Mass Index , Operative Time , Length of Stay
14.
Nat Commun ; 15(1): 6016, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019881

ABSTRACT

Molecular structure-editing through nitrogen insertion offers more efficient and ingenious pathways for the synthesis of nitrogen-containing compounds, which could benefit the development of synthetic chemistry, pharmaceutical research, and materials science. Substituted amines, especially nitrogen-containing alkyl heterocyclic compounds, are widely found in nature products and drugs. Generally, accessing these compounds requires multiple steps, which could result in low efficiency. In this work, a molecular editing strategy is used to realize the synthesis of nitrogen-containing compounds using aryl alkanes as starting materials. Using derivatives of O-tosylhydroxylamine as the nitrogen source, this method enables precise nitrogen insertion into the Csp2-Csp3 bond of aryl alkanes. Notably, further synthetic applications demonstrate that this method could be used to prepare bioactive molecules with good efficiency and modify the molecular skeleton of drugs. Furthermore, a plausible reaction mechanism involving the transformation of carbocation and imine intermediates has been proposed based on the results of control experiments.

15.
Environ Monit Assess ; 196(7): 678, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954106

ABSTRACT

Understanding the spatiotemporal changes in net primary productivity (NPP) and the driving factors behind these changes in climate-vulnerable regions is crucial for ecological conservation. This study simulates the actual NPP (NPPA) and climate potential NPP (NPPC) in the Three-River Headwaters Region from 2000 to 2020. The Theil-Sen Median method and Mann-Kendall mutation analyses are employed to explore their spatiotemporal variation patterns, while geographic weighted regression and machine learning are used to investigate the influence of anthropogenic activities and climatic factors on NPPA, the results indicate that the average NPPA across the entire region over multiple years is 382.506 g C m - 2 yr - 1 , which is 0.132 times the average annual NPPC over the past 21 years, showing an overall distribution pattern of low in the northwest and high in the southeast. The annual increase in NPPA from 2000 to 2020 is approximately 1.034 g C m - 2 yr - 1 . The source region of the Yangtze River shows the largest improvement in vegetation, with 74.1% of the area showing improvement. Between 2002 and 2003, the annual NPPA in the Three-River Headwaters Region experienced a sudden change, lagging behind the NPPC change by 1 year, and after 2005, the upward trend in NPPA became more pronounced. The impact of anthropogenic activities on NPPA shifted from positive to negative to positive from 2000 to 2020, with significant impact areas mainly concentrated in the northeast and a few areas in the central and southern parts. The proportion of areas with extremely significant impact increased from 1.9% in 2000 to 3.7% in 2020. Over the past 21 years, the main factors influencing NPPA changes in the Three-River Headwaters Region have been soil moisture and precipitation, with the influence of different climate factors on NPP changing over time. Additionally, NPP is more sensitive to changes in altitude in low-altitude areas. This study can provide more accurate theoretical support for ecological environment assessment and subsequent protection efforts in the Three-River Headwaters Region.


Subject(s)
Environmental Monitoring , Rivers , Rivers/chemistry , Climate Change , Anthropogenic Effects , China , Ecosystem
16.
J Fish Biol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965864

ABSTRACT

The hedgehog signaling pathway plays an important role in early development and growth of most vertebrates. Sonic hedgehog (shh) gene is a critical regulator of embryonic development in many species, including humans. However, it is not clear what roles shh can play in the development of fish. In this paper, shh gene was cloned from Pseudopleuronectes yokohamae. The full-length complementary DNA (cDNA) of P. yokohamae sonic hedgehog gene (Pyshh) comprises 3194 bp, with a 1317-bp open reading frame (ORF) that encodes a polypeptide of 438 amino acids with a typical HH-signal domain and Hint-N domain. The conserved sequences of the protein among species were predicted by using multiple sequence comparison. The phylogenetic tree construction showed that PySHH is clustered in a branch of Pleuronectidae. To explore the expression of Pyshh gene in various tissues of P. yokohamae, we used real-time fluorescence quantitative PCR technology to detect it. The results showed that Pyshh gene is widely distributed in various tissues of P. yokohamae juveniles, different tissues of adult males and females, and is particularly expressed in immune organs. The Pyshh gene expression was higher in the muscle and brain of juvenile fish, and higher in bone, gill, and skin of male fish than that of female fish, suggesting that Pyshh might be involved in the formation of immune organs of P. yokohamae. The expression of Pyshh gene significantly upregulated from the gastrula stage to the hatching stage. Western blotting of the expression levels of PySHH during different embryonic development stages revealed that PySHH levels increased gradually during development stages from oosperm stage to hatching stage. These results indicate that Pyshh is highly conserved among species and plays a critical role in the complex process of embryonic development. Its precise regulation is essential for the proper formation of many organs and tissues in the body, and disruptions in its function may have serious consequences for the formation of immune organs in fish.

17.
Environ Sci Technol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980177

ABSTRACT

There has been widespread concern about the health hazards of per- and polyfluoroalkyl substances (PFAS), which may be the risk factor for hyperuricemia with evidence still insufficient in the general population in China. Here, we conducted a nationwide study involving 9,580 adults aged 18 years or older from 2017 to 2018, measured serum concentrations of uric acid and PFAS (PFOA, PFOS, 6:2 Cl-PFESA, PFNA, PFHxS) in participants, to assess the associations of individual PFAS with hyperuricemia, and estimated a joint effect of PFAS mixtures. We found positive associations of higher serum PFAS with elevated odds of hyperuricemia in Chinese adults, with the greatest contribution from PFOA (69.37%). The nonmonotonic dose-response (NMDR) relationships were observed for 6:2 Cl-PFESA and PFHxS with hyperuricemia. Participants with less marine fish consumption, overweight, and obesity may be the sensitive groups to the effects of PFAS on hyperuricemia. We highlight the potential health hazards of legacy long-chain PFAS (PFOA) once again because of the higher weights of joint effects. This study also provides more evidence about the NMDR relationships in PFAS with hyperuricemia and emphasizes a theoretical basis for public health planning to reduce the health hazards of PFAS in sensitive groups.

18.
J Inflamm Res ; 17: 4163-4174, 2024.
Article in English | MEDLINE | ID: mdl-38973999

ABSTRACT

Purpose: Early recognition of coronary artery disease (CAD) could delay its progress and significantly reduce mortality. Sensitive, specific, cost-efficient and non-invasive indicators for assessing individual CAD risk in community population screening are urgently needed. Patients and Methods: 3112 patients with CAD and 3182 controls were recruited from three clinical centers in China, and differences in baseline and clinical characteristics were compared. For the discovery cohort, the least absolute shrinkage and selection operator (LASSO) regression was used to identify significant features and four machine learning algorithms (logistic regression, support vector machine (SVM), random forest (RF) and extreme gradient boosting (XGBoost)) were applied to construct models for CAD risk assessment, the receiver operating characteristics (ROC) curve and precision-recall (PR) curve were conducted to evaluate their predictive accuracy. The optimal model was interpreted by Shapley additive explanations (SHAP) analysis and assessed by the ROC curve, calibration curve, and decision curve analysis (DCA) and validated by two external cohorts. Results: Using LASSO filtration, all included variables were considered to be statistically significant. Four machine learning models were constructed based on these features and the results of ROC and PR curve implied that the XGBoost model exhibited the highest predictive performance, which yielded a high area of ROC curve (AUC) of 0.988 (95% CI: 0.986-0.991) to distinguish CAD patients from controls with a sensitivity of 94.6% and a specificity of 94.6%. The calibration curve showed that the predicted results were in good agreement with actual observations, and DCA exhibited a better net benefit across a wide range of threshold probabilities. External validation of the model also exhibited favorable discriminatory performance, with an AUC, sensitivity, and specificity of 0.953 (95% CI: 0.945-0.960), 89.9%, and 87.1% in the validation cohort, and 0.935 (95% CI: 0.915-0.955), 82.0%, and 90.3% in the replication cohort. Conclusion: Our model is highly informative for clinical practice and will be conducive to primary prevention and tailoring the precise management for CAD patients.

19.
ACS Nano ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991129

ABSTRACT

Emitting light toward on-demand directions is important for various optoelectronic applications, such as optical communication, displaying, and ranging. However, almost all existing directional emitters are assemblies of passive optical antennae and external light sources, which are usually bulky and fragile and show unendurable loss of light power. Here we theoretically propose and experimentally demonstrate a conceptual design of a directional emitter, by using a single surface-emitting laser source itself to achieve dynamically controlled beam steering. The laser is built on photonic crystals that operate near the band edges in the continuum. By shrinking laser sizes to tens-of-wavelength, the optical modes quantize in three-dimensional momentum space, and each of them directionally radiates toward the far-field. Further utilizing the luminescence spectrum shifting effect under current injection, we consecutively select a sequence of modes into lasing action and show the laser maintaining single-mode operation with line widths at a minimum of 1.8 MHz and an emitting power of ∼10 milliwatts, and we demonstrate fast beam steering across a range of 3.2° × 4° on a time scale of 500 ns. Our work proposes a method for on-chip active beam steering for the development of automotive, industrial, and robotic applications.

20.
Transl Cancer Res ; 13(6): 2799-2811, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988942

ABSTRACT

Background: RNA plays an important role in tumorigenesis. Changes in RNA may cause changes in the biological function. The N7-methylguanosine (m7G) methylation modification performs an integral function in tumor progression as the most widely existed RNA modification. Hepatocellular carcinoma (HCC) is among the greatest threats to human health worldwide. Low detection rates remain the main cause of advanced disease progression. Therefore, finding significant biomarkers for prognosis prediction and immune therapy response in HCC is valuable and urgently needed. Methods: RNA expression and clinical data were acquired from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. Different subtypes screening was finished by consensus cluster. Different expression was performed by R software. The results were validated by western blot (WB) methods. Genes with HCC prognostic potential were identified utilizing least absolute shrinkage and selection operator (LASSO) analyses. A prognosis model was established with the help of the risk score that we calculated. Related genes screening and protein-protein interactions (PPI) network construction were performed using the GeneMANIA database. Functional annotation was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) databases. In addition, gene set enrichment analysis (GSEA) of key genes and immune infiltration status were both done by R software. Finally, the immune infiltration was performed by cibersort method and single sample GSEA (ssGSEA) method. The response of immune therapy was validated by Tumor Immune Dysfunction and Exclusion database (TIDE) and the immune therapy cohort in GEO database. Results: We found that two different subtypes related with m7G RNA modification and four genes associated with m7G RNA modification were differentially expressed in the TCGA-Liver Hepatocellular Carcinoma (TCGA-LIHC) database. Additionally, to examine the value of these four genes in the HCC patients' prognoses according to the LASSO, we selected three genes, including WDR4, AGO2, and NCBP2, as prognostic related genes. Premised on the expression of these three genes, a risk score model and nomogram were constructed to provide a prediction of the HCC patients' prognoses. We performed functional annotation and created a PPI network based on the three genes (WDR4, NCBP2, and AGO2). Using R software, we performed the GSEA and immune regulation analyses. Finally, we predicted the relationship between the gene expression and the response of immune therapy. Conclusions: Our study suggests that high expression of m7G RNA modification subtype is related with poor prognosis and immune response. WDR4, AGO2, and NCBP2 are key regulators of m7G RNA modification which can be clinically promising biomarkers that can be used to treat HCC. In addition, our risk score model was shown to have a strong link to OS in patients with HCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...