Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.056
Filter
1.
Front Microbiol ; 15: 1463335, 2024.
Article in English | MEDLINE | ID: mdl-39360328

ABSTRACT

Introduction: Poor graft function (PGF), characterized by myelosuppression, represents a significant challenge following allogeneic hematopoietic stem cell transplantation (allo-HSCT) with human cytomegalovirus (HCMV) being established as a risk factor for PGF. However, the underlying mechanism remains unclear. Bone marrow endothelial progenitor cells (BM-EPCs) play an important role in supporting hematopoiesis and their dysfunction contributes to PGF development. We aim to explore the effects of CMV on BM-EPCs and its underlying mechanism. Methods: We investigated the compromised functionality of EPCs derived from individuals diagnosed with HCMV viremia accompanied by PGF, as well as after infected by HCMV AD 169 strain in vitro, characterized by decreased cell proliferation, tube formation, migration and hematopoietic support, and increased apoptosis and secretion of TGF-ß1. Results: We demonstrated that HCMV-induced TGF-ß1 secretion by BM-EPCs played a dominant role in hematopoiesis suppression in vitro experiment. Moreover, HCMV down-regulates Vitamin D receptor (VDR) and subsequently activates p38 MAPK pathway to promote TGF-ß1 secretion by BM-EPCs. Discussion: HCMV could infect BM-EPCs and lead to their dysfunction. The secretion of TGF-ß1 by BM-EPCs is enhanced by CMV through the activation of p38 MAPK via a VDR-dependent mechanism, ultimately leading to compromised support for hematopoietic progenitors by BM EPCs, which May significantly contribute to the pathogenesis of PGF following allo-HSCT and provide innovative therapeutic strategies targeting PGF.

2.
Sci Total Environ ; 954: 176561, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362550

ABSTRACT

The widespread use of antibiotics has resulted in large quantities of antibiotic residues entering aquatic environments, which can lead to the development of antibiotic-resistant bacteria and antibiotic-resistant genes, posing a potential environmental risk and jeopardizing human health. Constructing a microbial co-metabolism system has become an effective measure to improve the removal efficiency of antibiotics by microorganisms. This paper reviews the four main mechanisms involved in microbial removal of antibiotics: bioaccumulation, biosorption, biodegradation and co-metabolism. The promotion of extracellular polymeric substances for biosorption and extracellular degradation and the regulation mechanism of enzymes in biodegradation by microorganisms processes are detailed therein. Transformation pathways for microbial removal of antibiotics are discussed. Bacteria, microalgae, and microbial consortia's roles in antibiotic removal are outlined. The factors influencing the removal of antibiotics by microbial co-metabolism are also discussed. Overall, this review summarizes the current understanding of microbial co-metabolism for antibiotic removal and outlines future research directions.

3.
World J Clin Oncol ; 15(9): 1198-1206, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39351459

ABSTRACT

BACKGROUND: Lung cancer (LC) combined with chronic obstructive pulmonary disease (COPD) is a common combination of comorbidities. Anti-inflammation and modulation of oxidative/antioxidative imbalance may prevent COPD-induced LC, and are also crucial to the treatment of LC combined with COPD. Modern studies have shown that Tao Hong Si Wu Tang (THSW) has vasodilatory, anti-inflammatory, anti-fatigue, anti-shock, immunoregulatory, lipid-reducing, micronutrient-supplementing, and anti-allergy effects. AIM: To observe the effects of THSW on COPD and LC in mice. METHODS: A total of 100 specific pathogen-free C57/BL6 mice were randomly divided into five groups: Blank control group (group A), model control group (group B), THSW group (group C), IL-6 group (group D), and THSW + IL-6 group (group E), with 20 mice in each group. A COPD mouse model was established using fumigation plus lipopolysaccharide intra-airway drip, and an LC model was replicated by in situ inoculation using the Lewis cell method. RESULTS: The blank control group exhibited a clear alveolar structure. The model control and IL-6 groups had thickened alveolar walls, with smaller alveolar lumens, interstitial edema, and several inflammatory infiltrating cells. Histopathological changes in the lungs of the THSW and THSW + IL-6 groups were less than those of the model control group. The serum IL-1ß, IL-6, and TNF-α levels and IL-6R, JAK, p-JAK, STAT1/3, p-STAT1/3, FOXO, p-FOXO, and IL-7R expression levels in lung tissues of mice in the rest of the groups were significantly higher than those of the blank control group (P < 0.01). Compared with the model control group, the IL-6 group demonstrated significantly higher levels for the abovementioned proteins in the serum and lung tissues (P < 0.01), and the THSW group had significantly higher serum IL-1ß, IL-6, and TNF-α levels and IL-7R expression levels in lung tissues (P < 0.01) but significantly decreased IL-6R, JAK, p-JAK, STAT1/3, p-STAT1/3, FOXO, p-FOXO, and IL-7R levels (P < 0.01). CONCLUSION: THSW reduces the serum IL-1ß, IL-6, and TNF-α levels in the mouse model with anti-inflammatory effects. Its anti-inflammatory mechanism lies in inhibiting the overactivation of the JAK/STAT1/3 signaling pathway.

4.
Exp Cell Res ; 442(2): 114249, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39260675

ABSTRACT

Temporomandibular joint osteoarthritis (TMJ-OA) is characterized by the degradation of the extracellular matrix (ECM) in cartilage and the apoptosis of chondrocytes, which is caused by inflammation and disruptions of chondrocyte metabolism and inflammation. Lipoxin A4 (LXA4), a specialized pro-resolving mediator, has been shown to inhibit inflammation and regulate the balance between ECM synthesis and degradation. However, the therapeutic effects of LXA4 on TMJ-OA and its underlying mechanisms remain unclear. Interleukin-1 beta (IL-1ß)-induced chondrocyte and surgically induced TMJ-OA rat models were established in this study. The viability of chondrocytes treated with LXA4 was evaluated with the cell counting kit-8 (CCK-8) assay, while protein levels were assessed by western blot analysis, and the apoptosis rate was evaluated with terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labelling (TUNEL) staining. Histological analysis was conducted to evaluate the impact of LXA4 on cartilage degradation in TMJ-OA rat models. In vitro, the qRT-PCR and western blot analysis demonstrated that LXA4 facilitated the upregulation of collagen proteins (Collagen II) and decreased expression of matrix metalloproteinases (MMP-3, and MMP-13) associated with ECM modulation. LXA4 enhanced the TMJ-OA chondrocyte viability and decreased apoptotic rate. In vivo, histology and immunohistochemistry (IHC) analysis revealed that intraperitoneal injection of LXA4 contributed to the amelioration of chondrocyte injuries and deceleration of TMJ-OA. Transcriptomic sequencing revealed that cAMP signaling pathway was up-regulated and NF-κB signaling pathway was down-regulated in LXA4 treated group. LXA4 inhibited the phosphorylation of P65 and inhibitor of nuclear factor kappa B (IκBα) proteins while enhancing the phosphorylation PKA and CREB. This study demonstrates the potential of LXA4 as a therapeutic agent for suppressing chondrocyte catabolism and apoptosis by increasing PKA/CREB activity and decreasing NF-κB signaling.

5.
BMC Public Health ; 24(1): 2501, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39272004

ABSTRACT

BACKGROUND: Liver cancer (LC) screening, such as AFP test and abdominal ultrasound, is an effective way to prevent LC, one of the most common cancers worldwide. Despite the proven screening benefits, screening participation among high-risk populations for LC remains low. This suggests that targeted, systematic, and effective interventions should be provided to improve knowledge and awareness related to LC screening, enhance screening intentions, and thereby promote screening behaviors. Telephone is people's main medium of daily communication and mHealth-based programs offer a potential and effective solution for promoting health behaviors. The purpose of this study is to develop and implement a mHealth (WeChat app) based intervention guided by Fogg's Behavior Model (FBM) to augment the knowledge of LC prevention among people at risk of LC and enhance their motivation for screening, and to validate its effectiveness in improving LC screening. METHODS: We propose a two-arm, single-blind randomized controlled trial with 82 at-risk individuals of LC, delivering a 6-month mHealth-based intervention program with optional health counseling. Recruitment will be through tertiary hospitals and community organizations in 4 districts in Heng Yang. In total, 82 individuals at high risk for HCC will be randomized 1:1 to intervention or control (usual care) groups. The intervention group will receive intervention, whose contents are based on the FBM model, via multiple forms of media including PowerPoint presentation, multimedia video, health information booklet and screening message, which is delivered in the WeChat Applet. Control dyads will be provided with usual health education. Outcomes will be assessed at baseline and post-intervention. DISCUSSION: The findings of this study will provide evidence of the benefits of utilizing mHealth-based approaches in intervention development to enhance the effectiveness of screening adherence for high-risk people of LC. Further, the findings would provide reference to the potential incorporation of the targeted intervention in local community organizations. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR2400080530) Date registered: 31/1/2024.


Subject(s)
Early Detection of Cancer , Liver Neoplasms , Telemedicine , Humans , Early Detection of Cancer/methods , Liver Neoplasms/diagnosis , Liver Neoplasms/prevention & control , Single-Blind Method , Male , Female , China , Middle Aged , Adult , Randomized Controlled Trials as Topic
6.
Article in English | MEDLINE | ID: mdl-39279657

ABSTRACT

The successful filling of bone defects remains challenging due to the incongruity between bone graft materials and the dynamic process of bone healing. Developing multifunctional materials matching the dynamic process of bone healing offers a viable solution to the current dilemma. Lines of evidence have shown that engineering osteoimmunomodulatory biomaterials can modulate the function of immune cells and thus promote bone regeneration. Herein, we utilized silk fibroin (SF) and polyglycolic acid (PGA) to create a PGA-SF core-shell fibrous scaffold, incorporating interleukin-4 (IL-4) and tricalcium phosphate (TCP) as a codelivery system (PGA/TCP-SF/IL-4), aiming to achieve an initial rapid release of IL-4 and sustained release of TCP. The PGA/TCP-SF/IL-4 scaffold mimicked the native bone structure and showed superior tenacity in the wetting regime. In vitro studies demonstrated that the PGA/TCP-SF/IL-4 scaffold significantly reduced the inflammatory response by upregulating the M2 macrophages, created a favorable microenvironment for osteogenesis, and facilitated osteogenic differentiation and mineralization. Implantation of the PGA/TCP-SF/IL-4 scaffold into the rat skull defect model notably increased the formation of new bones. IL-4 and TCP acted synergistically in attenuating inflammation and enhancing osteogenic differentiation. Overall, this multifunctional scaffold comprehensively considers the various demands in the bone defect region, which might have a significant potential for application in bone reconstruction.

7.
Article in English | MEDLINE | ID: mdl-39236428

ABSTRACT

This work for the first time reported the complete transformation of 17ß-estradiol (E2) to estrone (E1) by unknown wild-type enzyme present in the widely used commercial arylsulfatase derived from Helix pomatia. It was found that acetate could effectively inhibit the unknown enzyme with a half inhibitory concentration (IC50) of 140.9 µM, while phosphate and citrate showed no inhibition. Since the buffer solutions with phosphate and citrate have been used in the enzymatic hydrolysis of natural estrogen conjugates for decades, the transformation of E2 to E1 likely occurred during such procedure, inevitably leading to overestimated E1, but underestimated E2. It was further suggested that acetate should be used to prevent this undesirable transformation during the enzymatic hydrolysis of natural estrogen conjugates.


Subject(s)
Arylsulfatases , Estradiol , Estrone , Helix, Snails , Estrone/chemistry , Estrone/metabolism , Estradiol/chemistry , Estradiol/metabolism , Helix, Snails/enzymology , Helix, Snails/metabolism , Helix, Snails/chemistry , Arylsulfatases/metabolism , Arylsulfatases/chemistry , Arylsulfatases/genetics , Animals
8.
BMC Plant Biol ; 24(1): 833, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39243055

ABSTRACT

BACKGROUND: 'Hongyang' kiwifruit (Actinidia chinensis cv 'Hongyang') is a high-quality variety of A. chinensis with the advantages of high yield, early ripening, and high stress tolerance. Studies have confirmed that the Shaker K+ genes family is involved in plant uptake and distribution of potassium (K+). RESULTS: Twenty-eight Shaker genes were identified and analyzed from the 'Hongyang' kiwifruit (A. chinensis cv 'Hongyang') genome. Subcellular localization results showed that more than one-third of the AcShaker genes were on the cell membrane. Phylogenetic analysis indicated that the AcShaker genes were divided into six subfamilies (I-VI). Conservative model, gene structure, and structural domain analyses showed that AcShaker genes of the same subfamily have similar sequence features and structure. The promoter cis-elements of the AcShaker genes were classified into hormone-associated cis-elements and environmentally stress-associated cis-elements. The results of chromosomal localization and duplicated gene analysis demonstrated that AcShaker genes were distributed on 18 chromosomes, and segmental duplication was the prime mode of gene duplication in the AcShaker family. GO enrichment analysis manifested that the ion-conducting pathway of the AcShaker family plays a crucial role in regulating plant growth and development and adversity stress. Compared with the transcriptome data of the control group, all AcShaker genes were expressed under low-K+stress, and the expression differences of three genes (AcShaker15, AcShaker17, and AcShaker22) were highly significant. The qRT-PCR results showed a high correlation with the transcriptome data, which indicated that these three differentially expressed genes could regulate low-K+ stress and reduce K+ damage in kiwifruit plants, thus improving the resistance to low-K+ stress. Comparison between the salt stress and control transcriptomic data revealed that the expression of AcShaker11 and AcShaker18 genes was significantly different and lower under salt stress, indicating that both genes could be involved in salt stress resistance in kiwifruit. CONCLUSION: The results showed that 28 AcShaker genes were identified and all expressed under low K+ stress, among which AcShaker22 was differentially and significantly upregulated. The AcShaker22 gene can be used as a candidate gene to cultivate new varieties of kiwifruit resistant to low K+ and provide a reference for exploring more properties and functions of the AcShaker genes.


Subject(s)
Actinidia , Potassium , Shaker Superfamily of Potassium Channels , Actinidia/genetics , Fruit/genetics , Fruit/growth & development , Gene Expression Regulation, Plant , Genome, Plant , Multigene Family , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Potassium/metabolism , Shaker Superfamily of Potassium Channels/genetics , Shaker Superfamily of Potassium Channels/metabolism , Stress, Physiological/genetics
9.
Oncol Lett ; 28(5): 523, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39268170

ABSTRACT

Endometriosis-associated adenocarcinoma of the rectum is rare and is usually misdiagnosed as colorectal carcinoma or other gynecological tumors. In the current report, the clinicopathological features of endometriosis-associated adenocarcinoma of the rectum in 2 patients were retrospectively analyzed and a literature review regarding this rare malignancy is presented. Case 1, a 49-year-old postmenopausal female patient, was admitted to Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology (Wuhan, China) due to a pelvic mass. Pelvic MRI revealed a 4.5×3.7-cm mass in the rectal wall, which severely adhered to the uterine wall. Microscopically, moderately differentiated glandular adenocarcinoma diffusely extended throughout all intestinal wall layers. Adenomyosis was found in the uterine body adherent to the rectum. Case 2, a 38-year-old reproductive female patient, presented with hematochezia. Histopathology of the resected tumor demonstrated benign endometriosis foci and atypical hyperplasia glands contiguous with endometrioid carcinoma invading the intestinal wall, and no other primary tumor sites were found, which satisfied the criteria for the diagnosis of malignant transformation of endometriosis of the rectum. Immunohistochemical (IHC) staining of both tumors revealed a Müllerian origin but not an intestinal origin. Furthermore, next-generation sequencing detected mutations of the BRCA1 (c.329dup), KRAS (c.35G>T), PIK3CA (c.3140A>G) and PTEN (c.750_751del) genes, and that microsatellite instability was high in case 1. In conclusion, endometriosis-associated adenocarcinoma of the rectum is a rare malignant tumor that should be distinguished from colorectal carcinoma for optimal treatment. Surgery and pathologic examination with IHC staining, even with molecular analysis, are essential for the final diagnosis. Primary cytoreductive surgery with resection of all macroscopic detectable lesions should be performed whenever possible. More prospective, multicenter, large-scale trials are required to examine the regimens and therapeutic value of adjuvant chemotherapy or radiology.

10.
BMC Psychiatry ; 24(1): 598, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237962

ABSTRACT

OBJECTIVE: Major depressive disorder (MDD) is often accompanied by psychotic symptoms. However, few studies have examined the relationship between psychotic symptoms and endocrine factors in adolescent patients with MDD. Therefore, this study aimed to investigate the prevalence and related endocrine clinical factors of psychotic symptoms in Chinese adolescent patients with MDD. METHODS: In total, 601 patients (aged 12-18) with MDD were recruited. The Patient Health Questionnaire - 9 items (PHQ - 9) was utilized for assessing depressive symptoms. Psychotic symptoms were assessed through clinical interviews. Prolactin (PRL), thyroid-stimulating hormone (TSH), triiodothyronine (T3), free triiodothyronine (FT3), thyroxine (T4), and free thyroxine (FT4) were also measured. RESULTS: The incidence of psychotic symptoms in adolescent patients with MDD was 22.6%. The findings demonstrated that age, self-harming behavior, PHQ-9 score, FT4, and normalized PRL were independently associated with psychotic symptoms in patients with MDD (All p < 0.05). CONCLUSIONS: PRL and FT4 levels are more likely to be abnormally elevated in major depressive adolescents with psychotic symptoms. Prolactin and thyroid hormones in patients with MDD should be paid more attention.


Subject(s)
Depressive Disorder, Major , Prolactin , Psychotic Disorders , Humans , Adolescent , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/blood , Male , Female , Prolactin/blood , Prevalence , Child , China/epidemiology , Psychotic Disorders/epidemiology , Psychotic Disorders/blood , Thyrotropin/blood , Thyroxine/blood , Triiodothyronine/blood , East Asian People
11.
Int J Mol Sci ; 25(17)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39273159

ABSTRACT

Southern root-knot nematodes are among the most pernicious phytoparasites; they are responsible for substantial yield losses in agricultural crops worldwide. The limited availability of nematicides for the prevention and control of plant-parasitic nematodes necessitates the urgent development of novel nematicides. Natural products have always been a key source for the discovery of pesticides. Waltherione A, an alkaloid, exhibits potent nematocidal activity. In this study, we designed and synthesized a series of quinoline and quinolone derivatives from Waltherione A, leveraging a strategy of structural simplification. Bioassays have revealed that the quinoline derivatives exhibit better activity than quinolone derivatives in terms of both nematocidal and fungicidal activities. Notably, compound D1 demonstrated strong nematocidal activity, with a 72 h LC50 of 23.06 µg/mL, and it effectively controlled the infection of root-knot nematodes on cucumbers. The structure-activity relationship suggests that the quinoline moiety is essential for the nematocidal efficacy of Waltherione A. Additionally, compound D1 exhibited broad-spectrum fungicidal activity, with an EC50 of 2.98 µg/mL against Botrytis cinerea. At a concentration of 200 µg/mL, it significantly inhibited the occurrence of B. cinerea on tomato fruits, with an inhibitory effect of 96.65%, which is slightly better than the positive control (90.30%).


Subject(s)
Antinematodal Agents , Antinematodal Agents/pharmacology , Antinematodal Agents/chemical synthesis , Antinematodal Agents/chemistry , Structure-Activity Relationship , Animals , Drug Design , Plant Diseases/parasitology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Cucumis sativus/parasitology , Cucumis sativus/microbiology , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Quinolines/chemistry , Quinolines/pharmacology , Quinolines/chemical synthesis , Nematoda/drug effects , Tylenchoidea/drug effects , Botrytis/drug effects , Quinolones/pharmacology , Quinolones/chemistry , Quinolones/chemical synthesis , Molecular Structure
12.
Int J Mol Sci ; 25(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39273235

ABSTRACT

Ionizing radiation exposure can cause damage to diverse tissues and organs, with the hematopoietic system being the most sensitive. However, limited information is available regarding the radiosensitivity of various hematopoietic cell populations in the bone marrow due to the high heterogeneity of the hematopoietic system. In this study, we observed that granulocyte-macrophage progenitors, hematopoietic stem/progenitor cells, and B cells within the bone marrow showed the highest sensitivity, exhibiting a rapid decrease in cell numbers following irradiation. Nonetheless, neutrophils, natural killer (NK) cells, T cells, and dendritic cells demonstrated a certain degree of radioresistance, with neutrophils exhibiting the most pronounced resistance. By employing single-cell transcriptome sequencing, we investigated the early responsive genes in various cell types following irradiation, revealing that distinct gene expression profiles emerged between radiosensitive and radioresistant cells. In B cells, radiation exposure led to a specific upregulation of genes associated with mitochondrial respiratory chain complexes, suggesting a connection between these complexes and cell radiosensitivity. In neutrophils, radiation exposure resulted in fewer gene alterations, indicating their potential for distinct mechanisms in radiation resistance. Collectively, this study provides insights into the molecular mechanism for the heterogeneity of radiosensitivity among the various bone marrow hematopoietic cell populations.


Subject(s)
Radiation, Ionizing , Single-Cell Analysis , Transcriptome , Animals , Mice , Single-Cell Analysis/methods , Transcriptome/radiation effects , Bone Marrow Cells/radiation effects , Bone Marrow Cells/metabolism , Mice, Inbred C57BL , Radiation Tolerance/genetics , Gene Expression Profiling , Hematopoietic Stem Cells/radiation effects , Hematopoietic Stem Cells/metabolism , Neutrophils/radiation effects , Neutrophils/metabolism
13.
Medicine (Baltimore) ; 103(38): e39584, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39312382

ABSTRACT

Telomere length (TL) has been implicated in the risk assessment of numerous cancers in observational studies. Nevertheless, the relationship between TL and malignant lymphoma remains unclear, displaying inconsistent patterns across different studies. A summary dataset for genome-wide association study of TL and malignant lymphoma was acquired from the OpenGWAS website. An extensive 2-sample Mendelian randomization (MR) analysis was performed, encompassing various methodologies such as MR-Egger, weighted median, weighted mode, simple mode, and the primary method of inverse-variance weighting (IVW). Sensitivity evaluations were performed using the Cochran Q test, MR-Egger regression, and leave-one-out analysis. The main method IVW revealed that TL substantially increased the risk of Hodgkin lymphoma (HL; odds ratio [OR] = 2.135; 95% confidence interval [CI] = 1.181-3.859; P = .012). Both the IVW and weighted median methods indicated statistical associations between genetically predicted TL and other types of non-HL (OR = 1.671, 95% CI = 1.009-2.768, P = .045; OR = 2.310, 95% CI = 1.033-5.169, P = .042). However, there was no association between TL and diffuse large B-cell lymphoma, follicular lymphoma, or mature T/natural Killer-cell lymphoma, and sensitivity analysis revealed no heterogeneity or horizontal pleiotropy, indicating that the causal effect was robust. Our study shows that TL plays different roles in different types of lymphomas. A longer TL significantly increases the risk of HL and other types of non-HL.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Mendelian Randomization Analysis/methods , Humans , Lymphoma/genetics , Lymphoma/epidemiology , Hodgkin Disease/genetics , Hodgkin Disease/epidemiology , Telomere/genetics , Risk Factors , Lymphoma, Follicular/genetics , Lymphoma, Follicular/epidemiology , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide
14.
J Immunother Cancer ; 12(9)2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39343509

ABSTRACT

BACKGROUND: The development and progression of colorectal cancer (CRC) are influenced by the gut environment, much of which is modulated by microbial-derived metabolites. Although some research has been conducted on the gut microbiota, there have been limited empirical investigations on the role of the microbial-derived metabolites in CRC. METHODS: In this study, we used LC-MS and 16S rRNA sequencing to identify gut microbiome-associated fecal metabolites in patients with CRC and healthy controls. Moreover, we examined the effects of Faecalibacterium prausnitzii and tyrosol on CRC by establishing orthotopic and subcutaneous tumor mouse models. Additionally, we conducted in vitro experiments to investigate the mechanism through which tyrosol inhibits tumor cell growth. RESULTS: Our study revealed changes in the gut microbiome and metabolome that are linked to CRC. We observed that Faecalibacterium prausnitzii, a bacterium known for its multiple anti-CRC properties, is significantly more abundant in the intestines of healthy individuals than in those of individuals with CRC. In mouse tumor models, our study illustrated that Faecalibacterium prausnitzii has the ability to inhibit tumor growth by reducing inflammatory responses and enhancing tumor immunity. Additionally, research investigating the relationship between CRC-associated features and microbe-metabolite interactions revealed a correlation between Faecalibacterium prausnitzii and tyrosol, both of which are less abundant in the intestines of tumor patients. Tyrosol demonstrated antitumor activity in vivo and specifically targeted CRC cells without affecting intestinal epithelial cells in cell experiments. Moreover, tyrosol treatment effectively reduced the levels of reactive oxygen species (ROS) and inflammatory cytokines in MC38 cells. Western blot analysis further revealed that tyrosol inhibited the activation of the NF-κB and HIF-1 signaling pathways. CONCLUSIONS: This study investigated the relationship between CRC development and changes in the gut microbiota and microbial-derived metabolites. Specifically, the intestinal metabolite tyrosol exhibits antitumor effects by inhibiting HIF-1α/NF-κB signaling pathway activation, leading to a reduction in the levels of ROS and inflammatory factors. These findings indicate that manipulating the gut microbiota and its metabolites could be a promising approach for preventing and treating CRC and could provide insights for the development of anticancer drugs.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Hypoxia-Inducible Factor 1, alpha Subunit , NF-kappa B , Phenylethyl Alcohol , Signal Transduction , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Phenylethyl Alcohol/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/pathology , Gastrointestinal Microbiome/drug effects , Humans , Animals , Mice , Signal Transduction/drug effects , NF-kappa B/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Female , Cell Line, Tumor
15.
Sci Data ; 11(1): 1062, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39349503

ABSTRACT

The soybean hawkmoth Clanis bilineata tsingtauica Mell (Lepidoptera, Sphingidae; CBT), as one of the main leaf-chewing pests of soybeans, has gained popularity as an edible insect in China recently due to its high nutritional value. However, high-quality genome of CBT remains unclear, which greatly limits further research. In the present study, we assembled a high-quality chromosome-level genome of CBT using PacBio HiFi reads and Hi-C technologies for the first time. The size of the assembled genome is 477.45 Mb with a contig N50 length of 17.43 Mb. After Hi-C scaffolding, the contigs were anchored to 29 chromosomes with a mapping rate of 99.61%. Benchmarking Universal Single-Copy Orthologues (BUSCO) completeness value is 99.49%. The genome contains 252.16 Mb of repeat elements and 14,214 protein-coding genes. In addition, chromosomal synteny analysis showed that the genome of CBT has a strong synteny with that of Manduca sexta. In conclusion, this high-quality genome provides an important resource for future studies of CBT and contributes to the development of integrated pest management strategies.


Subject(s)
Genome, Insect , Animals , Moths/genetics , Molecular Sequence Annotation , Chromosomes, Insect , Synteny
16.
ACS Appl Mater Interfaces ; 16(35): 46798-46809, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39099095

ABSTRACT

In the face of escalating global temperatures, the demand for innovative passive cooling technologies that are both low-cost and environmentally sustainable is more critical than ever. However, traditional cooling fabrics face challenges in achieving wearing comfort while maintaining breathability and durability. Herein, a novel fluffy microfibrous fabric utilizing polyolefin-elastomer and polypropylene with embedded zinc oxide nanoparticles is fabricated through melt-blown technology. The results reveal that the prepared samples demonstrate exceptional daytime radiative cooling properties that present a 12.5 °C cooling capacity under 1083 W/m2 solar radiation, highlighted by their ability to reflect up to 90.8% of solar radiation and their significantly enhanced thermal emissivity. Moreover, key findings include that the samples have robust mechanical strength, high elastic performance, and excellent antifouling capabilities, alongside superior cooling performance, which will provide an opportunity to explore the development of cooling garments for outdoor environments and contribute substantially to sustainable cooling solutions.

17.
Opt Lett ; 49(17): 4950-4953, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39208008

ABSTRACT

In the design of an extrinsic Fabry-Perot interferometer (EFPI) acoustic sensor, broadband response and high-sensitivity sensing are usually conflicting and need to be carefully balanced. Here, we present a novel, to the best of our knowledge, optical fiber acoustic sensor based on an ultra-thin diamond-like carbon (DLC) film, fabricated using the plasma-enhanced chemical vapor deposition method, and transferred by a surface-energy-assisted method. The sensor exhibits a broadband response ranging from 200 Hz to 100 kHz, maintains an average sensitivity of 457.3 mV/Pa within the range of 6 to 30 kHz, and can detect weak acoustic signals down to 3.23 µPa/Hz1/2@16.19 kHz. The combination of an ultra-thin DLC film with a relatively high Young's modulus and internal stresses results in a trade-off between high sensitivity and a broadband response. This performance demonstrates that our sensor is among the most advanced in the EFPI acoustic sensor family, with significant potential for applications such as photoacoustic spectroscopy, defect diagnosis, and bio-imaging.

18.
AME Case Rep ; 8: 63, 2024.
Article in English | MEDLINE | ID: mdl-39091541

ABSTRACT

Background: Solitary rectal ulcer syndrome (SRUS) is a rare chronic rectal lesion with potential for malignant transformation, although cases of rapid progression to mucinous adenocarcinoma are infrequent. This case report highlights such an instance in a 29-year-old male patient, emphasizing the importance of vigilance among clinicians for detecting canceration in SRUS patients. Case Description: The patient presented with recurrent constipation and anal discomfort, initially diagnosed with SRUS based on colonoscopy and pathological examination. Despite long-term mesalazine treatment, symptoms persisted, and subsequent evaluation revealed the development of mucinous adenocarcinoma within a short period. Surgical resection, combined with adjuvant FOLFOX chemotherapy, effectively controlled cancer progression. Immunohistochemical analysis showed positive expression of MLH1(+), MSH2(+), MSH6(+), PMS2(+), and HER2(+), providing molecular insights into SRUS-associated mucinous adenocarcinoma. Conclusions: This case underscores the need for increased awareness among clinicians regarding the potential for cancerous transformation in SRUS patients. Early detection and intervention are crucial for improving outcomes in SRUS-associated malignancies. Furthermore, this case adds to existing literature by presenting a rare instance of SRUS progressing rapidly to mucinous adenocarcinoma, highlighting the significance of regular monitoring and timely intervention in such cases. Further research is warranted to elucidate underlying mechanisms and risk factors, guiding future clinical practice and treatment strategies.

19.
Mol Nutr Food Res ; : e2400251, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39097954

ABSTRACT

Bioactive peptides (BPs) are protein fragments with beneficial effects on metabolism, physiology, and diseases. This review focuses on proteolytic BPs, which are produced by the action of gut microbiota on proteins in food and have demonstrated to influence the composition of gut microbes. And gut microbiota are candidate targets of BPs to alleviate oxidative stress, enhance immunity, and control diseases, including diabetes, hypertension, obesity, cancer, and immune and neurodegenerative diseases. Despite promising results, further research is needed to understand the mechanisms underlying the interactions between BPs and gut microbes, and to identify and screen more BPs for industrial applications. Overall, BPs offer potential as therapeutic agents for various diseases through their interactions with gut microbes, highlighting the importance of continued research in this area.

20.
Org Lett ; 26(32): 6866-6871, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39093330

ABSTRACT

We developed a protocol for the synthesis of highly functionalized 5,6-dihydro-imidazo[1,2-c][1,2,3]triazole derivatives 4-5 (DHITs) from 1-diazonaphthalen-2(1H)-one derivatives with heterocyclic ketene aminals (HKAs). This strategy involved cycloaddition and skeletal rearrangement entailing the heating of a mixture of substrates 1 with HKAs 2-3 and THF without any catalyst. As a result, a series of DHITs 4-5 were produced by cleaving one bond (1 C═N bond) and forming three bonds (1 N-N and 2 C-N bonds) in a single step. This protocol achieved the dual functionalization of diazo building blocks involving both the aromatic nitrogen alkylation reaction to form an ArC-N bond without any metal catalyst and the intermolecular cycloaddition of the N═N bond. These strategies can be used to synthesize functionalized DHITs for combinatorial and parallel syntheses via one-pot reactions without any catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL