Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 532
Filter
1.
Int J Biol Macromol ; : 135268, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233164

ABSTRACT

Fucoidan is a sulfate-containing polysaccharide derived from the cell walls of brown algae and marine invertebrates. Fucoidan is widely used for the treatment of various diseases owing to its various biological activities. Dermatitis is an inflammatory reaction that affects the skin. The primary clinical manifestations include atopic dermatitis (AD or eczema) and various subtypes of contact dermatitis. The treatment of dermatitis primarily improves symptoms and reduces inflammation. However, owing to individual variations, some patients have a poor prognosis or symptom recurrence after conventional treatment. Owing to the excellent anti-allergic and anti-inflammatory activities of the low cost nature compound fucoidan, its therapeutic effect in inflammatory diseases has recently attracted the attention of researchers. This article summarizes and analyzes the advantages and pharmacological mechanisms of fucoidan against dermatitis to provide a reference for the selection of drugs for the treatment of dermatitis.

2.
Carbohydr Polym ; 344: 122494, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39218538

ABSTRACT

Nanocellulose hydrogels are promising to replace synthetic ones for direct ink writing (DIW)-based 3D printing biobased applications. However, less gelation strength and low solid content of the hydrogels limit the printability and subsequent fidelity of the dried object. Herein, a biobased, ternary DIW hydrogel ink is developed by one-pot gelation of cellulose nanofibrils (CNF), sodium alginate (SA), and Ca-montmorillonite (Ca-MMT) via in situ ionic crosslinking. The addition of Ca-MMT into CNF/SA formulation simultaneously increases the solid content and gelation strength of the hydrogel. The resultant hydrogels exhibit shape recovery after compression. The optimal CNF concentration in the hydrogel is 1.2 wt%, enabling the highest compressive mechanical performance of the scaffolds. A series of complex, customized shapes with different curvatures and three-dimensional structures (e.g., high-curvature letters, pyramids, human ears, etc.) can be printed with high fidelity before and after drying. This study opens an avenue on preparing nanocellulose-based DIW hydrogel inks using one-pot gelation of the components, which offers a solution to combine DIW-based 3D printing with biobased hydrogel inks, towards diverse biobased applications.

3.
Fish Shellfish Immunol ; 153: 109822, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117128

ABSTRACT

T-cell/transmembrane immunoglobulin and mucin domain-containing (TIM) protein family has attracted particular attention because of their broad immune functions and the response to viral infections. TIM-1, a member of the TIM family, has been demonstrated to play an important role in viral infections. However, its roles during fish nodavirus infection still remained largely unknown. In this study, a homolog of TIM-1 from orange-spotted grouper (Epinephelus coioides) (EcTIM-1) was identified, and characterized. EcTIM-1 encoded a 217-amino acids protein, containing one Immunoglobulin domain. Homology analysis showed that EcTIM-1 shared 98.62 % and 42.99 % identity to giant grouper (E. lanceolatus) and human (Homo sapiens). Quantitative Real-time PCR analyses indicated that EcTIM-1 was expressed in all examined tissues, with higher expression in liver, spleen, skin, and heart, and was significantly up-regulated in response to red-spotted grouper nervous necrosis virus (RGNNV) infection. EcTIM-1 was distributed in the cytoplasm, and partly co-localized with Golgi apparatus and lysosomes in vitro. The ectopic expression of EcTIM-1 promoted RGNNV replication by increasing the level of viral genes transcription and protein synthesis. Besides, overexpression of EcTIM-1 decreased the luciferase activity of type I interferon (IFN1), interferon stimulated response elements (ISRE) and nuclear factor kappa-B (NF-κB) promoters, as well as the transcription of pro-inflammatory factors and interferon related genes. EcTIM-1 significantly suppressed the luciferase activity of IFN1, ISRE and NF-κB promoters evoked by Epinephelus coioides melanoma differentiation-associated gene 5 (EcMDA5), mitochondrial antiviral signaling protein (EcMAVS), stimulator of IFN genes (EcSTING) or TANK-binding kinase 1 (EcTBK1). Collectively, EcTIM-1 negatively regulated interferon and inflammatory response to promote RGNNV infection. These results provide a basis for a better understanding of the innate immune response of TIM-1 in fish.

4.
Food Chem X ; 23: 101642, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39113743

ABSTRACT

Panax notoginseng and Panax quinquefolium are important economic plants that utilize dried roots for medicinal and food dual purposes; there is still insufficient research of their stems and leaves, which also contain triterpenoid saponins. The extraction process was developed with a total saponin content of 12.30 ± 0.34% and 12.19 ± 0.64% for P. notoginseng leaves (PNL) and P. quinquefolium leaves (PQL) extracts, respectively. PNL and PQL saponin extracts showed good antioxidant, antihypertensive, hypoglycemic, and anti-inflammatory properties in vitro and RAW264.7 cells. A total of 699 metabolites were identified in PNL and PQL saponin extracts, with the majority being triterpenoid saponins, flavonoids and amino acids. Fourteen ginsenosides, 18 flavonoids or alkaloids, and 16 amino acids were enriched in both saponin extracts. Overall, the utilization of saponins from medicinal plants PNL and PQL has been developed to facilitate systematic research in the functional food and natural product industries.

5.
Phytochem Anal ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187395

ABSTRACT

INTRODUCTION: Astragaloside IV (AS-IV) is an index for the quality evaluation of the traditional Chinese medicine Astragalus and an important material basis for Astragalus to exert its medicinal effects, and it is difficult to obtain a single AS-IV by ordinary separation methods. OBJECTIVE: To find a new isolation method that can prepare AS-IV quickly and efficiently. METHODOLOGY: AS-IV was isolated from Astragalus membranaceus extract by high-speed countercurrent chromatography using a two-phase solvent system consisting of ethyl acetate/n-butanol/water (4.2:0.8:5, v/v) at a speed of 950 rpm at a flow rate of 2 mL/min using one of the high-speed countercurrent chromatographic sequential injection models developed during the previous study. RESULTS: Compared with the common countercurrent chromatographic separation, this separation method increased the injection volume and yield by 4-fold and 4.47-fold, respectively, with only about 1.2-fold increase in solvent consumption and separation time, and the purity was basically not reduced, and 55.9 mg of AS-IV, with a purity of 96.95%, was finally prepared from 400 mg of the crude extract in 240 min. CONCLUSION: The continuous injection mode of high-speed countercurrent chromatography was able to successfully prepare a large amount of AS-IV with high purity at one time.

6.
Biosens Bioelectron ; 263: 116631, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39111252

ABSTRACT

With significant advancements in understanding gene functions and therapy, the potential misuse of gene technologies, particularly in the context of sports through gene doping (GD), has come to the forefront. This raises concerns regarding the need for point-of-care testing of various GD candidates to counter illicit practices in sports. However, current GD detection techniques, such as PCR, lack the portability required for on-site multiplexed detection. In this study, we introduce an integrated microfluidics-based chip for multiplexed gene doping detection, termed MGD-Chip. Through the strategic design of hydrophilic and hydrophobic channels, MGD-Chip enables the RPA and CRISPR-Cas12a assays to be sequentially performed on the device, ensuring minimal interference and cross-contamination. Six potential GD candidates were selected and successfully tested simultaneously on the platform within 1 h. Demonstrating exceptional specificity, the platform achieved a detection sensitivity of 0.1 nM for unamplified target plasmids and 1 aM for amplified ones. Validation using mouse models established by injecting IGFI and EPO transgenes confirmed the platform's efficacy in detecting gene doping in real samples. This technology, capable of detecting multiple targets using portable elements, holds promise for real-time GD detection at sports events, offering a rapid, highly sensitive, and user-friendly solution to uphold the integrity of sports competitions.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Doping in Sports , Hydrophobic and Hydrophilic Interactions , Lab-On-A-Chip Devices , CRISPR-Cas Systems/genetics , Doping in Sports/prevention & control , Animals , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Mice , Humans , Erythropoietin/genetics , Erythropoietin/analysis , Equipment Design , CRISPR-Associated Proteins/genetics , Bacterial Proteins , Endodeoxyribonucleases
7.
Oncogene ; 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39154122

ABSTRACT

The dysregulation of long non-coding RNAs (lncRNAs) are involved in regulating tumor progression in multiple manner. However, little is known about whether lncRNA is involved in the translation regulation of proteins. Here, we identified that the suppressor of inflammatory macrophage apoptosis lncRNA (SIMALR) was highly expressed in nasopharyngeal carcinoma (NPC) tissues by analyzing the lncRNA microarray. Clinically, the high expression of SIMALR served as an independent predictor for inferior prognosis in NPC patients. SIMALR functioned as an oncogenic lncRNA that promoted the proliferation and metastasis of NPC cells in vitro and in vivo. Mechanistically, SIMALR served as a critical accelerator of protein synthesis by binding to eEF1A2 (eukaryotic translation elongation factor 1 alpha 2), one of the most crucial regulators in the translation machinery of the eukaryotic cells, and enhancing its endogenous GTPase activity. Furthermore, SIMALR mediated the activation of eEF1A2 phosphorylation to accelerate the translation of ITGB4/ITGA6, ultimately promoting the malignant phenotype of NPC cells. In addition, N-acetyltransferase 10 (NAT10) enhanced the stability of SIMALR and caused its overexpression in NPC through the N4-acetylcytidine (ac4C) modification. In sum, our results illustrate SIMALR functions as an accelerator for protein translation and highlight the oncogenic role of NAT10-SIMALR-eEF1A2-ITGB4/6 axis in NPC.

8.
Adv Healthc Mater ; : e2304285, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994661

ABSTRACT

Retinal ischemia‒reperfusion (IR) is a major contributor to vision impairment and irreversible vision loss due to retinal ganglion cell (RGC) injury or loss. Contemporary therapeutic approaches predominantly focus on the amelioration of symptoms rather than addressing the fundamental etiological factors. Oxidative stress is a notable feature and an important mediator of IR damage. Lycium barbarum polysaccharide (LBP), the main active ingredient of Lycium barbarum, has various pharmacological effects, including antioxidation, immunoregulation, and neuroprotective effects. In this study, the ROS-consumable moiety phenylboronic acid pinacol ester (PBA) is introduced to LBP molecules, which can self-assemble into nanoparticles in aqueous solution. This nanoparticle (termed PLBP) can reduce the cellular ROS levels and enhance the antioxidant capability of RGCs by activating the NRF2 pathway, thus protecting RGCs from ferroptosis and preserving visual function in response to IR injury. PLBP also reduces neuroinflammation by inhibiting the ability of microglia to phagocytose, migrate, secrete inflammatory cytokines, and activate the NF-κB pathway. In conclusion, this approach can be used as an inspiration for the future development of neuroprotective drugs.

9.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3365-3372, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041100

ABSTRACT

This study aims to investigate the effect of ergosterol peroxide(EP) on the apoptosis of human hepatocellular carcinoma and its mechanism of action. The cell viability of HepG2 and SK-Hep-1 cells with 0(blank control), 2.5, 5, 10, 20, 40, and 80 µmol·L~(-1) of EP after 24, 48, and 72 h of action was detected by using CCK-8 assay, and the half inhibitory concentrations(IC_(50)) at 24, 48, and 72 h were calculated. Formal experiments were performed to detect the effect of EP on intracellular reactive oxygen species(ROS) using DCFH-DA staining, the effect of EP on intracellular mitochondrial membrane potential using JC-1 staining, the number of apoptotic cells using Annexin V-FITC/PI double-staining after HepG2 cells were co-cultured with 0(blank control), 10, 20, 40 µmol·L~(-1) EP for 48 h. The effects of EP at different concentrations on apoptotic morphology were detected using AO/EB staining. The effects of different concentrations of EP on the protein expression of mitochondrial apoptosis pathway-related proteins B cell lymphoma 2(Bcl-2), cytochrome C(Cyt-C), Bcl-2-related X protein(Bax), caspase-3, cleaved caspase-3, caspase-9, and cleaved caspase-9 were examined by using Western blot. The results showed that different concentrations of EP could inhibit the proliferation of hepatocellular carcinoma with concentration-and time-dependent trends. Compared with the blank control group, the ROS level in the EP-treated group increased significantly(P<0.05). The mitochondrial membrane potential decreased significantly(P<0.05). The total apoptosis rate increased significantly(P<0.05). The expression of Bcl-2 protein was significantly down-regulated, and the expression of Cyt-C, Bax, cleaved caspase-9, and cleaved caspase-3 were significantly up-regulated(P<0.05). In summary, EP may inhibit the proliferation of hepatocellular carcinoma by modulating the mitochondria-mediated apoptosis pathway and induce apoptosis.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Ergosterol , Liver Neoplasms , Membrane Potential, Mitochondrial , Mitochondria , Reactive Oxygen Species , Humans , Apoptosis/drug effects , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Mitochondria/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Ergosterol/pharmacology , Ergosterol/analogs & derivatives , Membrane Potential, Mitochondrial/drug effects , Hep G2 Cells , Cytochromes c/metabolism , Caspase 3/metabolism , Caspase 3/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Caspase 9/metabolism , Caspase 9/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics
10.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3627-3635, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39041135

ABSTRACT

This study investigated the effects of ergosterol peroxide(EP) on the proliferation and apoptosis of MCF-7 breast cancer cells, explored its possible mechanisms of action, and verified the effects and mechanisms by in vitro experiments. Network pharmaco-logy was used to screen the target proteins of EP and construct target networks and protein-protein interaction(PPI) networks to predict the potential target proteins and related pathways involved in EP anti-breast cancer effects. The MTT assay was performed to measure the inhibitory effect of EP on MCF-7 cell proliferation, and the colony formation assay was used to assess the cell cloning ability. Flow cytometry and laser confocal microscopy were employed to evaluate cell apoptosis, mitochondrial membrane potential and reactive oxygen species(ROS) levels. Western blot analysis was conducted to examine the expression levels of B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax), cytochrome C(Cyt C), caspase-7, cleaved caspase-7, phosphatidylinositol 3-kinase(PI3K), and se-rine/threonine kinase B(AKT) in MCF-7 cells treated with EP. The results of network pharmacology prediction yielded 173 common targets between EP and breast cancer; the results of Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis showed that EP treatment for breast cancer mainly affected the signaling pathways such as cancer pathway, PI3K-AKT signaling pathway, cellular senescence signaling pathway, and viral carcinogenesis pathway; and the MTT assay results showed that the viability of MCF-7 cells in the EP group was significantly lower than that in the control group, exhibiting a time-and concentration-dependent trend, and EP can inhibit colony formation of MCF-7 breast cancer cells. Treatment with 10, 20, and 40 µmol·L~(-1) EP for 24 h resulted in a significant increase in the total apoptosis rate of MCF-7 cells, a significant decrease in mitochondrial membrane potential, and a significant increase in ROS levels. In addition, treatment with EP led to an upregulation of Cyt C, Bax, and cleaved caspase-7 protein expression, and a downregulation of p-PI3K, p-AKT, and Bcl-2 protein expression in MCF-7 cells. Studies have shown that EP inhibits MCF-7 breast cancer cell proliferation and reduces colony formation by a mechanism that may be related to the PI3K-AKT pathway mediating the mitochondrial apoptotic pathway.


Subject(s)
Apoptosis , Breast Neoplasms , Cell Proliferation , Ergosterol , Network Pharmacology , Humans , MCF-7 Cells , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Ergosterol/analogs & derivatives , Ergosterol/pharmacology , Female , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Membrane Potential, Mitochondrial/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Cytochromes c/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics
11.
Adv Sci (Weinh) ; : e2403262, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973296

ABSTRACT

Despite docetaxel combined with cisplatin and 5-fluorouracil (TPF) being the established treatment for advanced nasopharyngeal carcinoma (NPC), there are patients who do not respond positively to this form of therapy. However, the mechanisms underlying this lack of benefit remain unclear. DCAF7 is identified as a chemoresistance gene attenuating the response to TPF therapy in NPC patients. DCAF7 promotes the cisplatin resistance and metastasis of NPC cells in vitro and in vivo. Mechanistically, DCAF7 serves as a scaffold protein that facilitates the interaction between USP10 and G3BP1, leading to the elimination of K48-linked ubiquitin moieties from Lys76 of G3BP1. This process helps prevent the degradation of G3BP1 via the ubiquitin‒proteasome pathway and promotes the formation of stress granule (SG)-like structures. Moreover, knockdown of G3BP1 successfully reversed the formation of SG-like structures and the oncogenic effects of DCAF7. Significantly, NPC patients with increased levels of DCAF7 showed a high risk of metastasis, and elevated DCAF7 levels are linked to an unfavorable prognosis. The study reveals DCAF7 as a crucial gene for cisplatin resistance and offers further understanding of how chemoresistance develops in NPC. The DCAF7-USP10-G3BP1 axis contains potential targets and biomarkers for NPC treatment.

12.
BMC Infect Dis ; 24(1): 743, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39069620

ABSTRACT

BACKGROUND: Cysticercosis is a zoonotic parasitic disease that poses a serious threat to public health. It is widely distributed and has a high incidence rate in China. Reports of disseminated cysticercosis worldwide are rare. This article presents a case of disseminated cysticercosis in the Guangxi Zhuang Autonomous Region of southwestern China. CASE PRESENTATION: The patient, a 46-year-old male belonging to the Miao ethnic group, hailed from a region in Guangxi Zhuang Autonomous Region known for its high incidence of cysticercosis. He had a habit of consuming raw pork and beef. With a history of recurrent consciousness disturbances and limb convulsions for five years, he presented with headaches and dizziness nine days prior. Comprehensive examinations were conducted on the patient. Ultimately, based on epidemiological history, imaging findings, pathogen testing, and pathological results, he was diagnosed with disseminated cysticercosis. Following anthelmintic treatment, the patient was discharged with clear consciousness, free from headaches, dizziness, nausea, vomiting, and seizures. The patient is currently under follow-up care. CONCLUSION: It is crucial to enhance public awareness, promote health education, and cultivate good hygiene habits, as these are essential measures in reducing the incidence of cysticercosis.


Subject(s)
Cysticercosis , Humans , Male , Middle Aged , China/epidemiology , Cysticercosis/epidemiology , Cysticercosis/drug therapy , Cysticercosis/diagnosis , Animals , Anthelmintics/therapeutic use
13.
Nat Commun ; 15(1): 5300, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906860

ABSTRACT

Chemoresistance is a main reason for treatment failure in patients with nasopharyngeal carcinoma, but the exact regulatory mechanism underlying chemoresistance in nasopharyngeal carcinoma remains to be elucidated. Here, we identify PJA1 as a key E3 ubiquitin ligase involved in nasopharyngeal carcinoma chemoresistance that is highly expressed in nasopharyngeal carcinoma patients with nonresponse to docetaxel-cisplatin-5-fluorouracil induction chemotherapy. We find that PJA1 facilitates docetaxel resistance by inhibiting GSDME-mediated pyroptosis in nasopharyngeal carcinoma cells. Mechanistically, PJA1 promotes the degradation of the mitochondrial protein PGAM5 by increasing its K48-linked ubiquitination at K88, which further facilitates DRP1 phosphorylation at S637 and reduced mitochondrial reactive oxygen species production, resulting in suppression of GSDME-mediated pyroptosis and the antitumour immune response. PGAM5 knockdown fully restores the docetaxel sensitization effect of PJA1 knockdown. Moreover, pharmacological targeting of PJA1 with the small molecule inhibitor RTA402 enhances the docetaxel sensitivity of nasopharyngeal carcinoma in vitro and in vivo. Clinically, high PJA1 expression indicates inferior survival and poor clinical efficacy of TPF IC in nasopharyngeal carcinoma patients. Our study emphasizes the essential role of E3 ligases in regulating chemoresistance and provides therapeutic strategies for nasopharyngeal carcinoma based on targeting the ubiquitin-proteasome system.


Subject(s)
Docetaxel , Drug Resistance, Neoplasm , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Pyroptosis , Ubiquitin-Protein Ligases , Ubiquitination , Animals , Female , Humans , Male , Mice , Middle Aged , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Docetaxel/pharmacology , Docetaxel/therapeutic use , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Dynamins/metabolism , Dynamins/genetics , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Gasdermins , Gene Expression Regulation, Neoplastic/drug effects , Mice, Inbred BALB C , Mice, Nude , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , Phosphorylation/drug effects , Pyroptosis/drug effects , Pyroptosis/genetics , Reactive Oxygen Species/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination/drug effects , Xenograft Model Antitumor Assays
14.
Angew Chem Int Ed Engl ; 63(34): e202407477, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38847074

ABSTRACT

Layered oxides with ultrahigh nickel content are considered promising high energy cathode materials. However, their cycle stability is constrained by a series of heterogeneous structural transformations during the complex solid-state lithiation process. By in-depth investigation into the solid-state lithiation process of LiNi0.92Co0.04Mn0.04O2, it is found that the protruded parts on the surface of precursor particles tend to be surrounded by locally excessive LiOH, which promotes the formation of a rigid and dense R 3 - m ${{\rm { R}}\mathrel{\mathop{{\rm { 3}}}\limits^{{\rm -}}}{\rm { m}}}$ shell during the early stage of lithiation process. The shell will hinder the diffusion of lithium and topotactic lithiation within the particles, culminating in spatially heterogeneous intermediates that can impair the electrochemical properties of the cathode material. The spheroidization of the precursor can enhance uniformity in structural evolution during solid-phase lithiation. Ultrahigh nickel cathodes derived from spherical precursors demonstrate high initial discharge specific capacity (234.2 mAh g-1, in the range of 2.7-4.3 V) and capacity retention (89.3 % after 200 cycles), significantly superior to the non-spherical samples. This study not only sheds light on the intricate relationship between precursor shape and structural transformation but also introduces a novel strategy for enhancing cathode performance through precursor spheroidization.

15.
Angew Chem Int Ed Engl ; 63(36): e202407920, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38877853

ABSTRACT

Axially chiral biaryl δ-amino acids possess significantly different conformational properties and chiral environment from centrally chiral amino acids, therefore, have drawn considerable attention in the fields of synthetic and medicinal chemistry. Herein, a novel chiral phenanthroline-potassium catalyst has been developed by constructing a well-organized axially chiral ligand composed of one 1,10-phenanthroline unit and two axially chiral 1,1'-bi-2-naphthol (BINOL) units. In the presence of this catalyst, good to excellent yields and enantioselectivities (up to 99 % yield, 98 : 2 er) have been achieved in the ring-opening alcoholytic dynamic kinetic resolution of a variety of biaryl lactams, thereby providing an efficient protocol for catalytic asymmetric synthesis of unnatural axially chiral biaryl δ-amino acid derivatives.

16.
Lab Invest ; 104(8): 102090, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830579

ABSTRACT

Gastric cancer (GC) is one of the most common clinical malignant tumors worldwide, with high morbidity and mortality. Presently, the overall response rate to immunotherapy is low, and current methods for predicting the prognosis of GC are not optimal. Therefore, novel biomarkers with accuracy, efficiency, stability, performance ratio, and wide clinical application are needed. Based on public data sets, the chemotherapy cohort and immunotherapy cohort from Sun Yat-sen University Cancer Center, a series of bioinformatics analyses, such as differential expression analysis, survival analysis, drug sensitivity prediction, enrichment analysis, tumor immune dysfunction and exclusion analysis, single-sample gene set enrichment analysis, stemness index calculation, and immune cell infiltration analysis, were performed for screening and preliminary exploration. Immunohistochemical staining and in vitro experiments were performed for further verification. Overexpression of COX7A1 promoted the resistance of GC cells to Oxaliplatin. COX7A1 may induce immune escape by regulating the number of fibroblasts and their cellular communication with immune cells. In summary, measuring the expression levels of COX7A1 in the clinic may be useful in predicting the prognosis of GC patients, the degree of chemotherapy resistance, and the efficacy of immunotherapy.


Subject(s)
Antineoplastic Agents , Drug Resistance, Neoplasm , Immunotherapy , Oxaliplatin , Stomach Neoplasms , Female , Humans , Male , Middle Aged , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Cell Line, Tumor , Immunotherapy/methods , Oxaliplatin/therapeutic use , Oxaliplatin/pharmacology , Prognosis , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , Stomach Neoplasms/therapy
17.
Nurs Open ; 11(6): e2221, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923309

ABSTRACT

AIMS: To establish a comprehensive understanding of the roles of midwives and the challenges they encounter in the prevention, diagnosis and management of postpartum haemorrhage (PPH) following normal vaginal delivery. DESIGN: We conducted a scoping review following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Scoping Reviews (PRISMA-ScR) recommendations. METHODS: We considered studies related to the roles of midwives and the challenges they encounter in the prevention, diagnosis and management of PPH during vaginal delivery. We excluded guidelines, consensuses, abstracts of meetings and non-English language studies. Databases, including the Cochrane Library, PubMed, Web of Science, Ovid, Medline, Embase, JBI EBP and BIOSIS Previews, were searched on January 1, 2023, with no time limitations. RESULTS: We included 28 publications. Midwives play important roles in the prevention, diagnosis and management of postpartum haemorrhage during vaginal delivery. In the prevention of PPH, midwives' roles include identifying and managing high-risk factors, managing labour and implementing skin-to-skin contact. In the diagnosis of PPH, midwives' roles include early recognition and blood loss estimation. In the management of PPH, midwives are involved in mobilizing other professional team members, emergency management, investigating causes, enhancing uterine contractions, the repair of perineal tears, arranging transfers and preparation for surgical intervention. However, midwives face substantial challenges, including insufficient knowledge and skills, poor teamwork skills, insufficient resources and the need to deal with their negative emotions. Midwives must improve their knowledge, skills and teamwork abilities. Health care system managers and the government should give full support to midwives. Future research should focus on developing clinical practice guidelines for midwives for preventing, diagnosing and managing postpartum haemorrhage.


Subject(s)
Delivery, Obstetric , Postpartum Hemorrhage , Humans , Postpartum Hemorrhage/nursing , Postpartum Hemorrhage/prevention & control , Postpartum Hemorrhage/therapy , Female , Delivery, Obstetric/adverse effects , Delivery, Obstetric/nursing , Pregnancy , Midwifery , Nurse Midwives
18.
Drug Resist Updat ; 76: 101111, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38908233

ABSTRACT

Gemcitabine (GEM) based induction chemotherapy is a standard treatment for locoregionally advanced nasopharyngeal carcinoma (NPC). However, approximately 15 % of patients are still resistant to GEM-containing chemotherapy, which leads to treatment failure. Nevertheless, the underlying mechanisms of GEM resistance remain poorly understood. Herein, based on a microarray analysis, we identified 221 dysregulated lncRNAs, of which, DYNLRB2-AS1 was one of the most upregulated lncRNAs in GEM-resistance NPC cell lines. DYNLRB2-AS1 was shown to function as contain an oncogenic lncRNA that promoted NPC GEM resistance, cell proliferation, but inhibited cell apoptosis. Mechanistically, DYNLRB2-AS1 could directly bind to the DHX9 protein and prevent its interaction with the E3 ubiquitin ligase PRPF19, and thus blocking PRPF19-mediated DHX9 degradation, which ultimately facilitated the repair of DNA damage in the presence of GEM. Clinically, higher DYNLRB2-AS1 expression indicated an unfavourable overall survival of NPC patients who received induction chemotherapy. Overall, this study identified the oncogenic lncRNA DYNLRB2-AS1 as an independent prognostic biomarker for patients with locally advanced NPC and as a potential therapeutic target for overcoming GEM chemoresistance in NPC.


Subject(s)
DEAD-box RNA Helicases , Deoxycytidine , Gemcitabine , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , RNA, Long Noncoding , Animals , Humans , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/metabolism , Neoplasm Proteins , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ubiquitination/drug effects
19.
Fish Shellfish Immunol ; 150: 109611, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734119

ABSTRACT

During virus-host co-evolution, viruses have developed multiple strategies to dampen IFN response and prevent its antiviral activity in host cells. To date, the interactions between host IFN response and the immune evasion strategies exploited by fish iridoviruses still remain largely uncertain. Here, a potential immune evasion protein candidate of Singapore grouper iridovirus (SGIV), VP82 (encoded by SGIV ORF82) was screened and its roles during viral replication were investigated in detail. Firstly, VP82 overexpression dramatically decreased IFN or ISRE promoter activity and the transcription levels of IFN stimulated genes (ISGs) stimulated by grouper cyclic GMP-AMP synthase (EccGAS)/stimulator of interferon genes (EcSTING), TANK-binding kinase 1 (EcTBK1), IFN regulatory factor 3 (EcIRF3)and EcIRF7. Secondly, Co-IP assays indicated that VP82 interacted with EcIRF3 and EcIRF7, but not EcSTING and EcTBK1, which was consistent with the co-localization between VP82 and EcIRF3 or EcIRF7. Furthermore, VP82 promoted the degradation of EcIRF3 and EcIRF7 in a dose-dependent manner via the autophagy pathway. Finally, VP82 overexpression accelerated SGIV replication, evidenced by the increased transcriptions of viral core genes and viral production. Moreover, the antiviral action of EcIRF3 or EcIRF7 was significantly depressed in VP82 overexpressed cells. Together, VP82 was speculated to exert crucial roles for SGIV replication by inhibiting the IFN response via the degradation of IRF3 and IRF7. Our findings provided new insights into understanding the immune evasion strategies utilized by fish iridovirus through IFN regulation.


Subject(s)
DNA Virus Infections , Fish Diseases , Fish Proteins , Interferon Regulatory Factor-3 , Interferon Regulatory Factor-7 , Ranavirus , Viral Proteins , Animals , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Fish Diseases/immunology , Fish Diseases/virology , DNA Virus Infections/immunology , DNA Virus Infections/veterinary , Ranavirus/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Immunity, Innate/genetics , Interferons/genetics , Interferons/immunology , Interferons/metabolism , Immune Evasion , Bass/immunology , Bass/genetics , Virus Replication , Zebrafish Proteins , Interferon Regulatory Factors
20.
Stem Cell Rev Rep ; 20(6): 1501-1511, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38814409

ABSTRACT

The placenta plays a crucial role in maintaining normal pregnancy. The failure of spiral artery remodeling (SAR) is a key factor leading to placental ischemia and poor perfusion which is strongly associated with obstetric diseases, including preeclampsia (PE) and fetal growth restriction (FGR). Existing interventions for PE and FGR are limited and termination of pregnancy is inevitable when the maternal or fetus condition deteriorates. Considering the safety of the mother and fetus, treatments that may penetrate the placental barrier and harm the fetus are not accepted. Developing targeted treatment strategies for these conditions is urgent and necessary. With the proven efficacy of targeted therapy in treating conditions such as endometrial cancer and trophoblastic tumors, research on placental dysfunction continues to deepen. This article reviews the studies on placenta-targeted treatment and drug delivery strategies, summarizes the characteristics proposes corresponding improvement measures in targeted treatment, provides solutions for existing problems, and makes suggestions for future studies.


Subject(s)
Fetal Growth Retardation , Placenta , Pre-Eclampsia , Humans , Pregnancy , Fetal Growth Retardation/drug therapy , Pre-Eclampsia/drug therapy , Female , Placenta/metabolism , Drug Delivery Systems/methods
SELECTION OF CITATIONS
SEARCH DETAIL