Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.013
Filter
1.
Int J Biol Macromol ; 275(Pt 2): 133517, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960251

ABSTRACT

Reducing the risk of wound infection is an urgent issue health priority. Antibacterial polysaccharide-based hydrogels have attracted great attention for infectious wounds, attributed to their safe antimicrobial performance and natural non-toxicity and biodegradability advantages. In this study, the "all-in-one" self-adaptive and injectable cationic guar gum (CG)-based polysaccharide hydrogels (FA-TOB/CG) loaded with bioactive complexes were developed for infectious wound healing. The constructed antioxidant and antibacterial ferulic acid (FA)-tobramycin (TOB) bioactive complexes (FA-TOB) were used as the cross-linking agent and introduced into the CG matrix to construct the FA-TOB/CG hydrogel with a three-dimensional porous structure. The sterilization rates of FA-TOB/CG hydrogel against S. aureus and E. coli reached 98 % and 80 % respectively. In addition, the FA-TOB/CG also exhibits enhanced antioxidant performances (DPPH: > 40 %; ABTS: > 90 %; ·OH: > 50 %). More importantly, FA-TOB/CG hydrogel also showed the ability to sustain the release of FA and TOB. These superiorities of the FA-TOB/CG hydrogel enabled it to provide a moist wound environment and promote wound healing by eliminating bacteria, modulating the local inflammatory response, and accelerating collagen deposition and vascular regeneration. Thus, this study may enlarge a new sight for developing multifunctional dressings by incorporating bioactive complexes into polysaccharide hydrogels for infected wounds.

2.
Biosens Bioelectron ; 263: 116582, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39038401

ABSTRACT

This study develops a series of NBI-based acidochromic AIEgens engineered for ultra-wide acidochromic scope in self-reporting soft actuators, establishing the relationship between the photophysical properties and structural configurations of the AIEgens, further investigating their acidochromic behavior and fabricating acidity monitoring chips. The acidochromic behaviors were thoroughly investigated, and high-precision acidity monitoring chips were fabricated. We confirmed the protonation order of nitrogen atoms within the molecules and elucidated the acidochromic mechanisms through DFT and 1H NMR analyses. Utilizing these findings, we designed acid-driven hydrogel-based biomimetic actuators that can self-report and control the release of heavy loads under acidic conditions. These actuators hold significant potential for applications in targeted drug delivery within acidic biological environments, controlled release systems, and specialized transportation of heavy loads under acidic conditions.

3.
Langmuir ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041610

ABSTRACT

The theory of heat conduction paths has been widely recognized and widely studied in the research about the thermal conductivity of thermal conductive polymer composites at present. Encapsulating polymer pellets with thermally conductive fillers and processing them into thermally conductive polymer composites is a simple and effective method for constructing heat conduction paths. It is meaningful to investigate the related heat conduction mechanism of this method. Otherwise, this approach can significantly preserve the performance of the polymer substrate, making it highly valuable for practical material applications. In this work, polyethylene-octene elastomer (POE) pellets were encapsulated with thermal conductive fillers by physical absorption. Subsequently, the composite films containing heat conduction paths were fabricated using the encapsulated POE pellets through a heating press. Alumina (Al2O3), boron nitride (BN), and alumina/boron nitride hybrid (Al2O3/BN) fillers were used to prepare Al2O3@POE, BN@POE, and BN/Al2O3@POE composite films to investigate the influence of filler shapes on heat conduction path construction. The influence of the constitute and density of heat conduction paths on the thermal conductivity of composite films was analyzed by infrared thermal imaging, finite element analysis, and thermal resistance theory in detail. Owing to the reserved good adhesion and flexibility of the POE substrate, the composite films could be directly used as thermal interface materials for chip cooling, which presented a good heat dissipation effect. Furthermore, a series of integrated composite materials were prepared by the combination of encapsulated pellets with various functional films (copper foil, aluminum foil, and graphite sheet) through a one-pot heating press, exhibiting a good electromagnetic shielding effect. The performance of the composites and the corresponding preparation method demonstrate the strong significance of this research for practical applications.

4.
Biosens Bioelectron ; 262: 116555, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39018982

ABSTRACT

Researchers unremittingly strive to develop innovative luminophores to enhance intrinsic electrochemiluminescence (ECL) performance. However, the potential to harness facile strategies, such as manipulating the physical properties of luminophores while retaining functional chemical properties to fabricate cost-effective ECL complexes, remains underexplored. Herein, we reported a novel and efficient one-step galvanic technique to actualize aggregation-enhanced ECL (AEECL) of ruthenium complexes. It marked the first instance of the galvanic process being employed to synthesize aggregate luminophores through electrostatic attraction. The ECL intensity and efficiency of the prepared ruthenium complexes with AEECL properties surpassed traditional ruthenium complexes by 8.9 and 13.6 times, respectively, outperforming most reported luminophores. Remarkably, the target luminophore exhibited high stability across varied scan rates and temperatures. Furthermore, a binder-free and carbon paper-based AEECL analytical device for lidocaine detection was fabricated, achieving a satisfactory detection limit (0.34 nM) and selectivity. The convenient modulation strategy of aggregate structure, along with the transformative leap from insufficient ECL to AEECL, bring forth a new revenue in aggregate science. This research also promises a universally applicable and versatile protocol for future biological analysis and bioimaging applications.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Limit of Detection , Luminescent Measurements , Luminescent Measurements/methods , Luminescent Measurements/instrumentation , Electrochemical Techniques/methods , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Ruthenium/chemistry , Coordination Complexes/chemistry
5.
Transl Androl Urol ; 13(6): 940-948, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38983470

ABSTRACT

Background: Ureteral strictures (US) could lead to impaired kidney function, which was alleviated by ureteral reconstruction surgery. However, solitary kidney (SK) patients with US were more complicated to treat. This study aimed to evaluate the impact of reconstruction surgery on renal function based on estimated glomerular filtration rate (eGFR) in patients with SK. Methods: We retrospectively enrolled patients who underwent reconstruction surgery between April 2014 to March 2022. eGFR was measured pre- and postoperatively. The 'static renal function' was defined as a change in eGFR of 20% or less at the last follow-up, and the 'worsening renal function group' was defined as a decrease of greater than 20%. Results: A total of 61 SK patients were involved. The success rate of ureteral reconstruction surgery was 90.16% (55/61). The median follow-up time was 20.8 months (range, 3.7-109.2 months). The median eGFR was 65.5 (range, 15.1-99.9) and 65.3 (range, 3.8-123.4) mL/min/1.73 m2 at the baseline and the last follow-up. No statistically significant difference in eGFR was observed between the preoperative baseline and last follow-up visits (P=0.58). However, in patients with baseline renal dysfunction [chronic kidney disease (CKD) stage 3-5], the eGFR significantly improved at the last follow-up compared to the baseline (P=0.02). Three patients developed a 'worsening renal function' (4.92%). Besides, the systolic blood pressures (SBP) at follow-up significantly reduced compared to the preoperative baseline (P=0.002). Conclusions: Ureteral reconstruction surgery is an effective treatment to preserve renal function, which also achieves a high success rate and is associated with the reduction of SBP for SK patients with US.

6.
Adv Sci (Weinh) ; : e2405327, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38952072

ABSTRACT

Stimuli-responsive materials exhibiting exceptional room temperature phosphorescence (RTP) hold promise for emerging technologies. However, constructing such systems in a sustainable, scalable, and processable manner remains challenging. This work reports a bio-inspired strategy to develop RTP nanofiber materials using bacterial cellulose (BC) via bio-fermentation. The green fabrication process, high biocompatibility, non-toxicity, and abundant hydroxyl groups make BC an ideal biopolymer for constructing durable and stimuli-responsive RTP materials. Remarkable RTP performance is observed with long lifetimes of up to 1636.79 ms at room temperature. Moreover, moisture can repeatedly quench and activate phosphorescence in a dynamic and tunable fashion by disrupting cellulose rigidity and permeability. With capabilities for repeatable moisture-sensitive phosphorescence, these materials are highly suitable for applications such as anti-counterfeiting and information encryption. This pioneering bio-derived approach provides a reliable and sustainable blueprint for constructing dynamic, scalable, and processable RTP materials beyond synthetic polymers.

7.
Sci Total Environ ; 946: 174294, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38925378

ABSTRACT

The information concerning the effects of microplastics (MPs) on lake sediment environment, particularly structural properties, is still scant. This study aimed to investigate the effect of MPs characteristics (including concentration and size) on the sediment rheological properties, which affected sediment resuspension. After 60-day experiments, it was found that (0.5-2 %) MP in sediments decreased sediment viscosity, yield stress, and flow point shear stress by 14.7-38.4 %, 3.9-24.1 % and 13.5-36.5 %. Besides, sediment (with 50 µm MP addition) yield stress and flow point shear stress also dropped by 1.1-14.1 % and 9.6-12.9 % compared to 100 and 200 µm MP addition. The instability in sediment structure could be attributed to MP-induced EPS production and cation exchange capacity (CEC) changes. Accordingly, the decreases in rheological properties induced by different sizes and concentrations MPs might facilitate the sediments resuspension with wind and wave disturbances. The study shed light on previously overlooked environmental issues caused by MPs characteristics from a new perspective, thereby enhancing our understanding about the environmental behavior of MPs in lake sediment ecosystems.

8.
Endocrine ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833202

ABSTRACT

PURPOSE: This study aims to analyze the distribution of plasma aldosterone, renin activity, deoxycorticosterone (DOC), cortisol, cortisone, and 24 h urinary aldosterone (24 h-uAld) levels based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. MATERIALS AND METHODS: Plasma and 24 h urine were collected from 129 healthy volunteers in Northeast China. The effect of sodium intake, age, gender, blood sampling time on plasma aldosterone concentration (PAC), plasma renin activity (PRA), PAC to PRA ratio (ARR), DOC, cortisol, cortisone, cortisol to cortisone ratio, and 24 h-uAld were investigated by nonparametric test, multiple linear regression and Harris-Boyd's standard deviate test. RESULTS: There was no significant difference observed in 24 h-uAld, PAC (AM), PRA(AM), ARR (AM), DOC (AM), cortisol (AM), cortisone (AM), and cortisol to cortisone (AM) between high and low sodium intake group. Significant differences were observed between morning and afternoon sampling groups in terms of PAC, ARR, DOC, cortisol, and cortisone. Reference intervals (RIs) of 24 h-uAld, PAC (AM) were recommended to be partitioned by gender. RI of PRA was recommended age stratification. CONCLUSION: We recommend that the same reference interval could be used regardless of sodium intake. Gender is the main influence factor for 24 h-uAld, PAC, and ARR. Age is key influence factor for PRA.

9.
Infect Med (Beijing) ; 3(2): 100107, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38872909

ABSTRACT

Tuberculosis is a chronic infectious disease, caused by Mycobacterium tuberculosis, that seriously endangers human health. Skeletal tuberculosis is the most common type of extrapulmonary tuberculosis and tuberculous arthritis is the second most common type of skeletal tuberculosis. We report a case series of patients with tuberculous arthritis, two of whom had no joint disease in the past and presented as monoarthritis. The final patient had a history of rheumatoid arthritis, with polyarthritis that was aggravated during treatment with glucocorticoids and immunosuppressive drugs. This series of cases can contribute to early diagnosis and treatment with appropriate infection control measures.

10.
Angew Chem Int Ed Engl ; : e202408586, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853460

ABSTRACT

Understanding the properties of the precursor can provide deeper insight into the crystallization and nucleation mechanisms of perovskites, which is vital for the solution-process device performance. Herein, we conducted a detailed investigation into the photophysics properties of CsPbBr3 precursors in a broad concentration and various solvents. The precursor transformed from the solution state into the colloidal state and exhibited aggregation-induced emission character as the concentration increased. The aggregative luminescence from the precursors originates from the polybromide plumbous that is formed through the coordination of solvent molecules to the lead metal center. Two adducts with monodentate (PbBr2 ⋅ solvent) and bidentate (PbBr2 ⋅ 2solvent) ligands can be obtained, accompanied by emission with photoluminescence at 610 and 565 nm, respectively. Furthermore, the aggregative luminescence intensity and color could be regulated by changing the solvent and precursor ratio. Besides, we discussed the difference between the molecular aggregate in the organic system and the ionic aggregate in the inorganic system: the ionic aggregate is composed of solvated ions rather than individual molecules as in organic systems, which could possess properties that ions do not have. The fluorescence that is sensitive to Pb2+ coordination reported here could be applied to screen perovskite additives and judge the precursor aging.

11.
Angew Chem Int Ed Engl ; : e202407307, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38868977

ABSTRACT

Small organic photothermal agents (PTAs) with absorption bands located in the second near-infrared (NIR-II, 1000-1700 nm) window are highly desirable for effectively combating deep-seated tumors. However, the rarely reported NIR-II absorbing PTAs still suffer from a low molar extinction coefficient (MEC, ϵ), inadequate chemostability and photostability, as well as the high light power density required during the therapeutic process. Herein, we developed a series of boron difluoride bridged azafulvene dimer acceptor-integrated small organic PTAs. The B-N coordination bonds in the π-conjugated azafulvene dimer backbone endow it the strong electron-withdrawing ability, facilitating the vigorous donor-acceptor-donor (D-A-D) structure PTAs with NIR-II absorption. Notably, the PTA namely OTTBF shows high MEC (7.21×104 M-1 cm-1), ultrahigh chemo- and photo-stability. After encapsulated into water-dispersible nanoparticles, OTTBF NPs can achieve remarkable photothermal conversion effect under 1064 nm irradiation with a light density as low as 0.7 W cm-2, which is the lowest reported NIR-II light power used in PTT process as we know. Furthermore, OTTBF NPs have been successfully applied for in vitro and in vivo deep-seated cancer treatments under 1064 nm laser. This study provides an insight into the future exploration of versatile D-A-D structured NIR-II absorption organic PTAs for biomedical applications.

12.
J Mater Chem B ; 12(26): 6442-6451, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38860876

ABSTRACT

Self-assembled DNA nanostructures hold great promise in biosensing, drug delivery and nanomedicine. Nevertheless, challenges like instability and inefficiency in cellular uptake of DNA nanostructures under physiological conditions limit their practical use. To tackle these obstacles, this study proposes a novel approach that integrates the cationic polymer polyethyleneimine (PEI) with DNA self-assembly. The hypothesis is that the positively charged linear PEI can facilitate the self-assembly of DNA nanostructures, safeguard them against harsh conditions and impart them with the cellular penetration characteristic of PEI. As a demonstration, a DNA nanotube (PNT) was successfully synthesized through PEI mediation, and it exhibited significantly enhanced stability and cellular uptake efficiency compared to conventional Mg2+-assembled DNA nanotubes. The internalization mechanism was further found to be both clathrin-mediated and caveolin-mediated endocytosis, influenced by both PEI and DNA. To showcase the applicability of this hybrid nanostructure for biomedical settings, the KRAS siRNA-loaded PNT was efficiently delivered into lung adenocarcinoma cells, leading to excellent anticancer effects in vitro. These findings suggest that the PEI-mediated DNA assembly could become a valuable tool for future biomedical applications.


Subject(s)
Adenocarcinoma of Lung , DNA , Lung Neoplasms , Nanotubes , Polyethyleneimine , Proto-Oncogene Proteins p21(ras) , RNA, Small Interfering , Polyethyleneimine/chemistry , Humans , Nanotubes/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , DNA/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , A549 Cells , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Particle Size , Cell Proliferation/drug effects , Drug Carriers/chemistry
13.
Anatol J Cardiol ; 28(7): 353-362, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38940410

ABSTRACT

BACKGROUND: Myocardial ischemia-reperfusion injury (I/R) has been improved with drugs and effective reperfusion, but it still cannot be prevented. METHODS: To investigate whether renal denervation (RDN) reduces cardiomyocyte apoptosis by ameliorating endoplasmic reticulum stress, 60 male specific pathogen-free (SPF) Wistar rats were randomly divided into 6 groups (n = 6). We established the I/R rat model by ligating the left anterior descending artery. The I/R+ angiotensin receptor neprilysin inhibitors (ARNI) group received ARNIs for 2 weeks until euthanasia. RESULTS: The I/R+RDN and I/R+ARNI groups have significantly ameliorated left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) and reversed expansion of the left ventricular end-systolic diameter (LVSD) and left ventricular end diastolic diameter (LVDD) compared to the I/R group. The levels of norepinephrine (NE), angiotensin II, and aldosterone (ALD) increased significantly in the I/R group, but decreased significantly after RDN and ARNI intervention. In the I/R+RDN and I/R+ARNI groups, the myocardial tissue edema was alleviated. The infarct size was smaller in the I/R+RDN and I/R+ARNI groups compared to the I/R group. Apoptosis of cardiomyocytes and fibroblasts in myocardial tissue increased significantly in the I/R group, which was greatly diminished by RDN and ARNI. The expression of Bax, caspase-3, CHOP, PERK, and ATF4 protein was significantly increased in the I/R group, which compared to other groups, and the level of CHOP, PERK, and ATF4 gene expression increased. After RDN intervention, these expression levels recovered to varying degrees. CONCLUSION: The effect of RDN may be associated with regulating the endoplasmic reticulum stress PERK/ATF4 signaling pathway.


Subject(s)
Apoptosis , Disease Models, Animal , Kidney , Myocardial Reperfusion Injury , Myocytes, Cardiac , Rats, Wistar , Animals , Male , Rats , Denervation , Endoplasmic Reticulum , Endoplasmic Reticulum Stress , Kidney/innervation , Kidney/pathology , Mitochondria/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Random Allocation
14.
BMC Pediatr ; 24(1): 390, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858617

ABSTRACT

BACKGROUND: Oculocutaneous albinism (OCA) is a group of autosomal recessive hereditary disorders that affect melanin biosynthesis, resulting in abnormalities in hair, skin, and eyes. Retinopathy of prematurity (ROP) is a proliferative retinopathy mainly observed in premature infants with low birth weight and early gestational age, but it can also affect full-term infants or children with normal weight, particularly in developing countries. The coexistence of ROP and OCA is rare. There is limited documentation regarding treatment approaches, with few studies reporting positive outcomes with laser treatment due to the absence of melanin pigment. This study discusses the treatment challenges in a female infant diagnosed with ROP and OCA, and underscores the importance of genetic analysis in guiding therapeutic decisions for this rare comorbid condition. CASE PRESENTATION: The study presents a case of ROP occurring concurrently with OCA. Genetic testing revealed two variants, c.727C > T (p.R243C) and c.1832 T > C (p.L611P), in the OCA2 gene, inherited from the patient's mother and father, respectively. The identified mutations were consistent with a diagnosis of OCA2, classified as a subtype of OCA. The patient initially received intravitreal anti-vascular endothelial growth factor (anti-VEGF) injection, followed by laser photocoagulation therapy for a recurrent event. A favorable outcome was observed during the 2-month follow-up period. CONCLUSIONS: The co-occurrence of ROP and OCA is a rare phenomenon, and this is the first recorded case in the Chinese population. The current case supports the use of laser as the primary treatment modality for ROP in OCA2 patients with partial pigmentation impairment. Furthermore, genetic analysis can aid in predicting the effectiveness of laser photocoagulation in this patient population.


Subject(s)
Albinism, Oculocutaneous , Retinopathy of Prematurity , Humans , Female , Albinism, Oculocutaneous/genetics , Albinism, Oculocutaneous/complications , Albinism, Oculocutaneous/therapy , Retinopathy of Prematurity/genetics , Retinopathy of Prematurity/therapy , Retinopathy of Prematurity/complications , Infant, Newborn , Membrane Transport Proteins/genetics , Mutation , Angiogenesis Inhibitors/therapeutic use , Laser Coagulation , Bevacizumab/therapeutic use
15.
Cureus ; 16(5): e60372, 2024 May.
Article in English | MEDLINE | ID: mdl-38883073

ABSTRACT

Erythroderma, also known as exfoliative dermatitis, is a rarely reported atypical cutaneous manifestation of adult-onset Still's disease (AOSD). We present the case of erythroderma in association with AOSD that was steroid dependent and responded to tocilizumab therapy. Skin rash, pruritis, and related laboratory findings were significantly improved upon the addition of tocilizumab, while prednisolone was successfully tapered to an ever-lowest maintenance level. To our knowledge, this is the first to report the sole therapeutic effect of tocilizumab in erythroderma related to AOSD.

16.
Nat Cell Biol ; 26(6): 1003-1018, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38858501

ABSTRACT

Patients with IDH-wild-type glioblastomas have a poor five-year survival rate along with limited treatment efficacy due to immune cell (glioma-associated microglia and macrophages) infiltration promoting tumour growth and resistance. To enhance therapeutic options, our study investigated the unique RNA-RNA-binding protein complex LOC-DHX15. This complex plays a crucial role in driving immune cell infiltration and tumour growth by establishing a feedback loop between cancer and immune cells, intensifying cancer aggressiveness. Targeting this complex with blood-brain barrier-permeable small molecules improved treatment efficacy, disrupting cell communication and impeding cancer cell survival and stem-like properties. Focusing on RNA-RNA-binding protein interactions emerges as a promising approach not only for glioblastomas without the IDH mutation but also for potential applications beyond cancer, offering new avenues for developing therapies that address intricate cellular relationships in the body.


Subject(s)
Brain Neoplasms , Glioblastoma , Isocitrate Dehydrogenase , RNA-Binding Proteins , Tumor Microenvironment , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/drug therapy , Humans , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Animals , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Line, Tumor , Mice , Mutation , Antineoplastic Agents/pharmacology , Xenograft Model Antitumor Assays , Cell Proliferation , Gene Expression Regulation, Neoplastic
17.
Pestic Biochem Physiol ; 202: 105971, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879290

ABSTRACT

Paraquat (PQ) poisoning leads to irreversible fibrosis in the lungs with high mortality and no known antidote. In this study, we investigated the effect of the SET and MYND domain containing 2 (SMYD2) on PQ-induced pulmonary fibrosis (PF) and its potential mechanisms. We established an in vivo PQ-induced PF mouse model by intraperitoneal injection of PQ (20 mg/kg) and in vitro PQ (25 µM)-injured MLE-12 cell model. On the 15th day of administration, tissue injury, inflammation, and fibrosis in mice were evaluated using various methods including routine blood counts, blood biochemistry, blood gas analysis, western blotting, H&E staining, ELISA, Masson staining, and immunofluorescence. The findings indicated that AZ505 administration mitigated tissue damage, inflammation, and collagen deposition in PQ-poisoned mice. Mechanistically, both in vivo and in vitro experiments revealed that AZ505 treatment suppressed the PQ-induced epithelial-mesenchymal transition (EMT) process by downregulating GLI pathogenesis related 2 (GLIPR2) and ERK/p38 pathway. Further investigations demonstrated that SMYD2 inhibition decreased GLIPR2 methylation and facilitated GLIPR2 ubiquitination, leading to GLIPR2 destabilization in PQ-exposed MLE-12 cells. Moreover, rescue experiments conducted in vitro demonstrated that GLIPR2 overexpression eliminated the inhibitory effect of AZ505 on the ERK/p38 pathway and EMT. Our results reveal that the SMYD2 inhibitor AZ505 may act as a novel therapeutic candidate to suppress the EMT process by modulating the GLIPR2/ERK/p38 axis in PQ-induced PF.


Subject(s)
Epithelial-Mesenchymal Transition , Paraquat , Pulmonary Fibrosis , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Epithelial-Mesenchymal Transition/drug effects , Mice , Paraquat/toxicity , Male , p38 Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/drug effects , Mice, Inbred C57BL , Cell Line , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/genetics
18.
Front Pharmacol ; 15: 1377836, 2024.
Article in English | MEDLINE | ID: mdl-38818379

ABSTRACT

Testicular torsion is a critical urologic condition for which testicular detorsion surgery is considered irreplaceable as well as the golden method of reversal. However, the surgical treatment is equivalent to a blood reperfusion process, and no specific drugs are available to treat blood reperfusion injuries. Salidroside (SAL) is one of the main effective substances in rhodiola, which has been shown to have antioxidant and antiapoptosis activities. This study was designed to determine whether SAL exerted a protective effect on testicular ischemia-reperfusion (I/R) injury. In this study, the I/R injury model of the testes and reoxygenation (OGD/R) model were used for verification, and SAL was administered at doses of 100 mg/kg and 0.05 mmol/L, respectively. After the experiments, the testicular tissue and TM4 Sertoli cells were collected for histopathologic and biochemical analyses. The results revealed that SAL improves the structure of testicular tissue and regulates the oxidation-antioxidation system. To further understand the molecular mechanisms of SAL in treating testicular I/R injuries, transcriptomics and metabonomics analyses were integrated. The results show that the Nfr2/HO-1/GPX4/ferroptosis signaling pathway is enriched significantly, indicating that it may be the main regulatory pathway for SAL in the treatment of testicular I/R injuries. Thereafter, transfection with Nrf2 plasmid-liposome was used to reverse verify that the Nfr2/HO-1/GPX4/ferroptosis signaling pathway was the main pathway for SAL anti-testicular I/R injury treatment. Thus, it is suggested that SAL can protect against testicular I/R injuries by regulating the Nfr2/HO-1/GPX4 signaling pathway to inhibit ferroptosis and that SAL may be a potential drug for the treatment of testicular I/R injuries.

19.
Nat Commun ; 15(1): 4647, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821919

ABSTRACT

Controllable photofluorochromic systems with high contrast and multicolor in both solutions and solid states are ideal candidates for the development of dynamic artificial intelligence. However, it is still challenging to realize multiple photochromism within one single molecule, not to mention good controllability. Herein, we report an aggregation-induced emission luminogen TPE-2MO2NT that undergoes oxidation cleavage upon light irradiation and is accompanied by tunable multicolor emission from orange to blue with time-dependence. The photocleavage mechanism revealed that the self-generation of reactive oxidants driving the catalyst-free oxidative cleavage process. A comprehensive analysis of TPE-2MO2NT and other comparative molecules demonstrates that the TPE-2MO2NT molecular scaffold can be easily modified and extended. Further, the multicolor microenvironmental controllability of TPE-2MO2NT photoreaction within polymer matrices enables the fabrication of dynamic fluorescence images and 4D information codes, providing strategies for advanced controllable information encryption.

20.
Chem Commun (Camb) ; 60(46): 5960-5963, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38767007

ABSTRACT

A cationic aggregation-induced emission photosensitizer (AIE-PS) MNNPyBB has been reported to have antibacterial effects against both Gram-positive and Gram-negative bacteria. The bacterial kill mechanism has been investigated and elucidated. In a methicillin-resistant Staphylococcus aureus subcutaneous infection model, wound closure has been achieved with normal re-epithelialization and preserved skin morphology.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Photosensitizing Agents , Methicillin-Resistant Staphylococcus aureus/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Animals , Mice , Staphylococcal Infections/drug therapy , Boron Compounds/chemistry , Boron Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...