Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.467
Filter
1.
medRxiv ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38978683

ABSTRACT

We investigated the risks of post-acute and chronic adverse kidney outcomes of SARS-CoV-2 infection in the pediatric population via a retrospective cohort study using data from the RECOVER program. We included 1,864,637 children and adolescents under 21 from 19 children's hospitals and health institutions in the US with at least six months of follow-up time between March 2020 and May 2023. We divided the patients into three strata: patients with pre-existing chronic kidney disease (CKD), patients with acute kidney injury (AKI) during the acute phase (within 28 days) of SARS-CoV-2 infection, and patients without pre-existing CKD or AKI. We defined a set of adverse kidney outcomes for each stratum and examined the outcomes within the post-acute and chronic phases after SARS-CoV-2 infection. In each stratum, compared with the non-infected group, patients with COVID-19 had a higher risk of adverse kidney outcomes. For patients without pre-existing CKD, there were increased risks of CKD stage 2+ (HR 1.20; 95% CI: 1.13-1.28) and CKD stage 3+ (HR 1.35; 95% CI: 1.15-1.59) during the post-acute phase (28 days to 365 days) after SARS-CoV-2 infection. Within the post-acute phase of SARS-CoV-2 infection, children and adolescents with pre-existing CKD and those who experienced AKI were at increased risk of progression to a composite outcome defined by at least 50% decline in estimated glomerular filtration rate (eGFR), eGFR <15 mL/min/1.73m 2 , End Stage Kidney Disease diagnosis, dialysis, or transplant. Lay abstract: This study examined the impact of COVID-19 on kidney health in children and adolescents under 21 years old in the United States. Using data from the RECOVER program, we analyzed the health records of 1,864,637 young individuals from 19 hospitals and health institutions between March 2020 and May 2023. The study focused on three groups: those with pre-existing chronic kidney disease (CKD), those who experienced acute kidney injury (AKI) during the initial COVID-19 infection, and those without any prior kidney issues. The results showed that children and adolescents who had COVID-19 were at a higher risk of developing serious kidney problems later on, even if they had no previous kidney conditions. This research highlights the long-term effects of COVID-19 on kidney health in young people and underscores the importance of monitoring kidney function in pediatric COVID-19 patients.

2.
Small ; : e2404254, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984755

ABSTRACT

Single-atom catalysts (SACs), combining the advantages of multiphase and homogeneous catalysis, have been increasingly investigated in various catalytic applications. Carbon-based SACs have attracted much attention due to their large specific surface area, high porosity, particular electronic structure, and excellent stability. As a cheap and readily available carbon material, biochar has begun to be used as an alternative to carbon nanotubes, graphene, and other such expensive carbon matrices to prepare SACs. However, a review of biochar-based SACs for environmental pollutant removal and energy conversion and storage is lacking. This review focuses on strategies for synthesizing biochar-based SACs, such as pre-treatment of organisms with metal salts, insertion of metal elements into biochar, or pyrolysis of metal-rich biomass, which are more simplistic ways of synthesizing SACs. Meanwhile, this paper attempts to 1) demonstrate their applications in environmental remediation based on advanced oxidation technology and energy conversion and storage based on electrocatalysis; 2) reveal the catalytic oxidation mechanism in different catalytic systems; 3) discuss the stability of biochar-based SACs; and 4) present the future developments and challenges regarding biochar-based SACs.

3.
Anal Chem ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965741

ABSTRACT

Lipids play integral roles in biological processes, with carbon-carbon double bonds (C═C) markedly influencing their structure and function. Precise characterization and quantification of unsaturated lipids are crucial for understanding lipid physiology and discovering disease biomarkers. However, using mass spectrometry for these purposes presents significant challenges. In this study, we developed a microwave-assisted magnesium monoperoxyphthalate hexahydrate (MMPP) epoxidation reaction, coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS), to analyze unsaturated lipids. Microwave irradiation expedited the MMPP epoxidation, achieving complete derivatization in 10 min without byproducts. A diagnostic ion pair, displaying a 16 Da mass difference, effectively identified the location of the C═C bond in mass spectra. Microwave irradiation also significantly facilitated the epoxidation reaction of polyunsaturated lipids, achieving yields greater than 85% and yielding a complete epoxidation product. This simplifies chromatographic separation and aids in accurate quantification. Additionally, a purification process was implemented to remove excess derivatization reagents, significantly reducing mass spectrometry response suppression and enhancing analytical reproducibility. The method's effectiveness was validated by analyzing unsaturated lipids in rat plasma from a type I diabetes model. We quantified nine unsaturated lipids and characterized 42 fatty acids and glycerophospholipids. The results indicated that unsaturated fatty acids increased in diabetic plasma while unsaturated glycerophospholipids decreased. Furthermore, the relative abundances of Δ9/Δ11 isomer pairs also exhibited a close association with diabetes. In conclusion, microwave-assisted MMPP epoxidation coupled with LC-MS/MS provides an effective strategy for characterization and quantification of polyunsaturated lipids, offering deeper insight into the physiological impact of unsaturated lipids in related diseases.

4.
Wideochir Inne Tech Maloinwazyjne ; 19(1): 11-24, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38974763

ABSTRACT

Introduction: Epidural analgesia has been studied for its potential advantages after surgery in a number of randomized clinical trials, with most finding improvements in pain and secondary endpoints like the incidence of postoperative complications. Aim: To assess the relationship between use of epidural analgesia and adverse cardiac outcomes expressed by myocardial infarction (MI). Material and methods: Fifty-three studies were recruited to quantify the influence of different surgical-related analgesic methods on clinical parameters (mortality and adverse events). The results of these trials were analysed using a random effects model, which was then used to calculate the mean difference (MD) with 95 per cent confidence intervals (CIs). Results: Epidural analgesia resulted in preferred cardiac outcomes compared with traditional analgesia. These findings were supported by significantly lower MI events for the epidural analgesia group as follows: p = 0.005, p = 0,007, and p = 0.03 for the total number of included studies, studies with high risk of bias, and studies with low risk of bias, respectively. Studies with intermediate risk showed a non-significant difference between both groups (p = 0.7). Conclusions: Epidural analgesia has a significant protective cardiac effect through the reduction of postoperative MI events among surgery subjects.

5.
Transl Cancer Res ; 13(6): 2913-2937, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988945

ABSTRACT

Background: Endometrial carcinoma (EC) is one of the most prevalent gynecologic malignancies and requires further classification for treatment and prognosis. Long non-coding RNAs (lncRNAs) and immunogenic cell death (ICD) play a critical role in tumor progression. Nevertheless, the role of lncRNAs in ICD in EC remains unclear. This study aimed to explore the role of ICD related-lncRNAs in EC via bioinformatics and establish a prognostic risk model based on the ICD-related lncRNAs. We also explored immune infiltration and immune cell function across prognostic groups and made treatment recommendations. Methods: A total of 552 EC samples and clinical data of 548 EC patients were extracted from The Cancer Genome Atlas (TCGA) database and University of California Santa Cruz (UCSC) Xena, respectively. A prognostic-related feature and risk model was developed using the least absolute shrinkage and selection operator (LASSO). Subtypes were classified with consensus cluster analysis and validated with t-Distributed Stochastic Neighbor Embedding (tSNE). Kaplan-Meier analysis was conducted to assess differences in survival. Infiltration by immune cells was estimated by single sample gene set enrichment analysis (ssGSEA), Tumor IMmune Estimation Resource (TIMER) algorithm. Quantitative polymerase chain reaction (qPCR) was used to detect lncRNAs expression in clinical samples and cell lines. A series of studies was conducted in vitro and in vivo to examine the effects of knockdown or overexpression of lncRNAs on ICD. Results: In total, 16 ICD-related lncRNAs with prognostic values were identified. Using SCARNA9, FAM198B-AS1, FKBP14-AS1, FBXO30-DT, LINC01943, and AL161431.1 as risk model, their predictive accuracy and discrimination were assessed. We divided EC patients into high-risk and low-risk groups. The analysis showed that the risk model was an independent prognostic factor. The prognosis of the high- and low-risk groups was different, and the overall survival (OS) of the high-risk group was lower. The low-risk group had higher immune cell infiltration and immune scores. Consensus clustering analysis divided the samples into four subtypes, of which cluster 4 had higher immune cell infiltration and immune scores. Conclusions: A prognostic signature composed of six ICD related-lncRNAs in EC was established, and a risk model based on this signature can be used to predict the prognosis of patients with EC.

6.
J Nanobiotechnology ; 22(1): 408, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992664

ABSTRACT

BACKGROUND: Ovarian cancer (OC) has the highest fatality rate among all gynecological malignancies, necessitating the exploration of novel, efficient, and low-toxicity therapeutic strategies. Ferroptosis is a type of programmed cell death induced by iron-dependent lipid peroxidation and can potentially activate antitumor immunity. Developing highly effective ferroptosis inducers may improve OC prognosis. RESULTS: In this study, we developed an ultrasonically controllable two-dimensional (2D) piezoelectric nanoagonist (Bi2MoO6-MXene) to induce ferroptosis. A Schottky heterojunction between Bi2MoO6 (BMO) and MXene reduced the bandgap width by 0.44 eV, increased the carrier-separation efficiency, and decreased the recombination rate of electron-hole pairs under ultrasound stimulation. Therefore, the reactive oxygen species yield was enhanced. Under spatiotemporal ultrasound excitation, BMO-MXene effectively inhibited OC proliferation by more than 90%, induced lipid peroxidation, decreased mitochondrial-membrane potential, and inactivated the glutathione peroxidase and cystathionine transporter protein system, thereby causing ferroptosis in tumor cells. Ferroptosis in OC cells further activated immunogenic cell death, facilitating dendritic cell maturation and stimulating antitumor immunity. CONCLUSION: We have succeeded in developing a highly potent ferroptosis inducer (BMO-MXene), capable of inhibiting OC progression through the sonodynamic-ferroptosis-immunogenic cell death pathway.


Subject(s)
Ferroptosis , Immunogenic Cell Death , Ovarian Neoplasms , Ferroptosis/drug effects , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Humans , Animals , Cell Line, Tumor , Immunogenic Cell Death/drug effects , Mice , Reactive Oxygen Species/metabolism , Lipid Peroxidation/drug effects , Membrane Potential, Mitochondrial/drug effects , Bismuth/pharmacology , Bismuth/chemistry
7.
Chem Asian J ; : e202400554, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956446

ABSTRACT

A six-cyclic crown ether-type pillar[5]arene was synthesized, and the five ethylene oxide loops were located outside the cavity and not affected by temperature changes which was confirmed by variable-temperature NMR experiment in DMSO-d6 and CDCl3 and 2D 1H-1H NOESY experiment in CDCl3. The six-cyclic pillar[5]-crown also showed greater binding ability of host-guest with bis(pyridinium) derivatives than conventional alkoxy pillar[5]arenes that illustrated through 1H NMR titration spectroscopic experiment in acetone-d6/CDCl3 (1:1) and UV-vis titration experiments in CHCl3 at room temperature. The five benzocrown ethers at the periphery were able to bind metal cations by 1H NMR titration spectroscopic experiment in CD2Cl2/methanol-d4(9:1).

8.
Nat Metab ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907081

ABSTRACT

Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have been associated with potential cardiovascular benefits, partly attributed to their bioactive metabolites. However, the underlying mechanisms responsible for these advantages are not fully understood. We previously reported that metabolites of the cytochrome P450 pathway derived from eicosapentaenoic acid (EPA) mediated the atheroprotective effect of ω-3 PUFAs. Here, we show that 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and its receptor, sphingosine-1-phosphate receptor 1 (S1PR1), in endothelial cells (ECs) can inhibit oscillatory shear stress- or tumor necrosis factor-α-induced endothelial activation in cultured human ECs. Notably, the atheroprotective effect of 17,18-EEQ and purified EPA is circumvented in male mice with endothelial S1PR1 deficiency. Mechanistically, the anti-inflammatory effect of 17,18-EEQ relies on calcium release-mediated endothelial nitric oxide synthase (eNOS) activation, which is abolished upon inhibition of S1PR1 or Gq signaling. Furthermore, 17,18-EEQ allosterically regulates the conformation of S1PR1 through a polar interaction with Lys34Nter. Finally, we show that Vascepa, a prescription drug containing highly purified and stable EPA ethyl ester, exerts its cardiovascular protective effect through the 17,18-EEQ-S1PR1 pathway in male and female mice. Collectively, our findings indicate that the anti-inflammatory effect of 17,18-EEQ involves the activation of the S1PR1-Gq-Ca2+-eNOS axis in ECs, offering a potential therapeutic target against atherosclerosis.

9.
Zhen Ci Yan Jiu ; 49(6): 611-617, 2024 Jun 25.
Article in English, Chinese | MEDLINE | ID: mdl-38897805

ABSTRACT

OBJECTIVES: To observe the effect of acupuncture and moxibustion on arterial elasticity in patients with early carotid atherosclerosis. METHODS: A total of 62 patients with early carotid atherosclerosis were randomly divided into a blank group (12 cases, 1 cases dropped-off), a sham-acupuncture group (25 cases, 5 cases dropped-off) and an acupuncture group (25 cases, 3 cases dropped-off). Patients in the acupuncture group received acupuncture treatment, including ①acupuncture:Baihui (GV20), Yintang (GV24+), Renying (ST9), Neiguan (PC6), Yanglingquan (GB34);②moxibustion:Yinqiguiyuan (Zhongwan [CV12], Xiawan [CV10], Qihai [CV6], Guanyuan [CV4]), Sihua (Geshu [BL17], Danshu [BL19]);③Intradermal needle:Xinshu (BL15), Danshu (BL19). Patients in the sham acupuncture group received placebo acupuncture, moxibustion, an intradermal needle, and the acupoints were the same as the acupuncture group. The above treatments were performed twice a week for 12 weeks. No intervention was given to the patients in the blank group. Diet and lifestyle education was given to the three groups. The ultrafast pulse wave velocity, including beginning-systolic pulse wave velocity (BS) and end-systolic pulse wave velocity (ES), was observed before treatment and 1, 2, 3 months after treatment in the three groups. The blood lipid level and platelet count (PLT) at each time point were observed. The safety of the treatments was also evaluated. RESULTS: Compared with those before treatment, the BS and ES values of both sides in the acupuncture group decreased at 2 and 3 months after treatment (P<0.05). Compared with the blank group, the bilateral ES of the acupuncture group were decreased at 2 months after treatment (P<0.05), and the bilateral BS and ES were decreased at 3 months (P<0.05). Compared with the sham-acupuncture group, the acupuncture group showed a decrease in left BS and left ES after 3 months of treatment (P<0.05), and the overall decrease on the left side of the acupuncture group was better than that on the right side. There were no significant differences between three groups in the levels of blood lipid and PLT at each time point. No serious adverse safety events occurred in the three groups during the treatment. CONCLUSIONS: Acupuncture and moxibustion therapy can improve arterial elasticity in patients with early carotid atherosclerosis, and it is safe and effective.


Subject(s)
Acupuncture Points , Acupuncture Therapy , Carotid Artery Diseases , Moxibustion , Humans , Male , Female , Middle Aged , Aged , Carotid Artery Diseases/therapy , Carotid Artery Diseases/physiopathology , Elasticity , Adult , Carotid Arteries/physiopathology
10.
Front Oncol ; 14: 1396439, 2024.
Article in English | MEDLINE | ID: mdl-38887237

ABSTRACT

Objective: This study aims to establish a prediction model for neoadjuvant immunochemotherapy (NICT) in lung squamous cell carcinoma to guide clinical treatment. Methods: This retrospective study included 50 patients diagnosed with lung squamous cell carcinoma who received NICT. The patients were divided into the pathological complete response (PCR) group and the non-PCR group. HE staining and multiple immunofluorescence (mIF) techniques were utilized to analyze the differences in the immune microenvironment between these groups. LASSO regression and optimal subset regression were employed to identify the most significant variables and construct a prediction model. Results: The PCR group showed higher densities of lymphocyte nuclei and karyorrhexis based on HE staining. Furthermore, based on mIF analysis, the PCR group showed higher cell densities of CD8+, PD-L1+, and CD8+PD-L1+ in the tumor region, while showing lower cell densities of CD3+Foxp3+, Foxp3+, and CD163+. Logistic univariate analysis revealed CD8+PD-L1+, PD-L1+, CD8+, CD4+LAG-3+, lymphocyte nuclei, and karyorrhexis as significant factors influencing PCR. By using diverse screening methods, the three most relevant variables (CD8+, PD-L1+, and CD8+PD-L1+ in the tumor region) were selected to establish the prediction model. The model exhibited excellent performance in both the training set (AUC=0.965) and the validation set (AUC=0.786). In the validation set, In comparison to the conventional TPS scoring criteria, the model attained superior accuracy (0.85), specificity(0.67), and sensitivity (0.92). Conclusion: NICT treatment might induce anti-tumor effects by enriching immune cells and reactivating exhausted T cells. CD8+, PD-L1+, and CD8+PD-L1+ cell abundances within the tumor region have been closely associated with therapeutic efficacy. Incorporating these three variables into a predictive model allows accurate forecasting of treatment outcomes and provides a reliable basis for selecting NICT treatment strategies.

11.
Cancer Lett ; 597: 217059, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38876383

ABSTRACT

5-Methylcytosine (m5C) methylation is a significant post-transcriptional modification that play a crucial role in the development and progression of numerous cancers. Whereas the functions and molecular mechanisms underlying m5C methylation in gliomas remain unclear. This study dedicated to explore changes of m5C levels and the clinical significance of the m5C writer NSUN4 in gliomas. We found that high m5C levels were negatively related to prognosis of patients with glioma. Moreover, gain- and loss-of-function experiments revealed the role of NSUN4 in enhancing m5C modification of mRNA to promote the malignant progression of glioma. Mechanistically speaking, NSUN4-mediated m5C alterations regulated ALYREF binding to CDC42 mRNA, thereby impacting the mRNA stability of CDC42. We also demonstrated that CDC42 promoted glioma proliferation, migration, and invasion by activating the PI3K-AKT pathway. Additionally, rescue experiments proved that CDC42 overexpression weaken the inhibitory effect of NSUN4 knockdown on the malignant progression of gliomas in vitro and in vivo. Our findings elucidated that NSUN4-mediated high m5C levels promote ALYREF binding to CDC42 mRNA and regulate its stability, thereby driving the malignant progression of glioma. This provides theoretical support for targeted the treatment of gliomas.

12.
Phytomedicine ; 130: 155546, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38833790

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia, and its increasing prevalence is a global concern. Early diagnostic markers and therapeutic targets are essential for DM prevention and treatment. Pueraria, derived from kudzu root, is used clinically for various symptoms, and its active compound, Puerarin, shows promise in improving insulin resistance and reducing inflammation. PURPOSE: This study aims to evaluate the protective effects of metformin and Puerarin at different doses in an STZ-induced DM mouse model. The intricate metabolites within the serum of STZ-induced diabetic mice were subjected to thorough investigation, thus elucidating the intricate mechanism through which Puerarin demonstrates notable efficacy in the treatment of diabetes. METHODS: An STZ-induced DM mouse model is established. Mice are treated with metformin and puerarin at varying doses. Physiological, biochemical, and histomorphological assessments are performed. Metabolomics analysis is carried out on serum samples from control, DM, metformin, and medium-dose Puerarin groups. Western blot and qRT-PCR technologies are used to validate the mechanisms. RESULTS: The DM mouse model replicates abnormal blood glucose, insulin levels, physiological, biochemical irregularities, as well as liver and pancreas damage. Treatment with metformin and Puerarin restores these abnormalities, reduces organ injury, and modulates AMPK, PPARγ, mTOR, and NF-κB protein and mRNA expression. Puerarin activates the AMPK-mTOR and PPARγ-NF-κB signaling pathways, regulating insulin signaling, glucolipid metabolism, and mitigating inflammatory damage. CONCLUSION: This study demonstrates that Puerarin has the potential to treat diabetes by modulating key signaling pathways. The focus was on the finding that Puerarin has been shown to improve insulin signaling, glucolipid metabolism and attenuate inflammatory damage through the modulation of the AMPK-mTOR and PPARγ-NF-κB pathways. The discovery of Puerarin's favorable protective effect and extremely complex mechanism highlights its prospect in the treatment of diabetes and provides theoretical support for its comprehensive development and utilization.


Subject(s)
AMP-Activated Protein Kinases , Blood Glucose , Diabetes Mellitus, Experimental , Hypoglycemic Agents , Isoflavones , Metformin , NF-kappa B , PPAR gamma , Pueraria , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Isoflavones/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , NF-kappa B/metabolism , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Male , Metformin/pharmacology , PPAR gamma/metabolism , Pueraria/chemistry , Mice , Blood Glucose/drug effects , Blood Glucose/metabolism , AMP-Activated Protein Kinases/metabolism , Metabolomics , Insulin/blood , Insulin/metabolism
13.
Lancet Oncol ; 25(7): 901-911, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823410

ABSTRACT

BACKGROUND: Antibody-drug conjugates have promising clinical activity in the treatment of solid tumours. BL-B01D1 is a first-in-class EGFR-HER3 bispecific antibody-drug conjugate. We aimed to assess the safety and preliminary antitumour activity of BL-B01D1 in patients with locally advanced or metastatic solid tumours. METHODS: This first-in-human, open-label, multicentre, dose-escalation and dose-expansion phase 1 trial was conducted in seven hospitals in China, enrolling patients aged 18-75 years (dose escalation; phase 1a) or older than 18 years (dose expansion; phase 1b), with a life expectancy of at least 3 months, an Eastern Cooperative Oncology Group performance status of 0-1, and histologically or cytologically confirmed locally advanced or metastatic solid tumours that had progressed on current standard treatment. In the phase 1a i3+3 design, patients received intravenous BL-B01D1 at three different schedules: 0·27 mg/kg, 1·5 mg/kg, and 3·0 mg/kg weekly; 2·5 mg/kg, 3·0 mg/kg, and 3·5 mg/kg on days 1 and 8 of each cycle every 3 weeks; or 5·0 mg/kg and 6·0 mg/kg on day 1 of each cycle every 3 weeks. The primary objectives of phase 1a were to identify the safety, maximum tolerated dose, and dose-limiting toxicity. In phase 1b, patients were treated in two schedules: 2·5 and 3·0 mg/kg on days 1 and 8 every 3 weeks, or 4·5, 5·0, and 6·0 mg/kg on day 1 every 3 weeks. The primary objectives of phase 1b were to assess the safety and recommended phase 2 dose of BL-B01D1, and objective response rate was a key secondary endpoint. Safety was analysed in all patients with safety records who received at least one dose of BL-B01D1. Antitumour activity was assessed in the activity analysis set which included all patients who received at least one dose of BL-B01D1 every 3 weeks. This trial is registered with China Drug Trials, CTR20212923, and ClinicalTrials.gov, NCT05194982, and recruitment is ongoing. FINDINGS: Between Dec 8, 2021, and March 13, 2023, 195 patients (133 [65%] men and 62 [32%] women; 25 in phase 1a and 170 in phase 1b) were consecutively enrolled, including 113 with non-small-cell lung cancer, 42 with nasopharyngeal carcinomas, 13 with small-cell lung cancer, 25 with head and neck squamous cell carcinoma, one with thymic squamous cell carcinoma, and one with submandibular lymphoepithelioma-like carcinoma. In phase 1a, four dose-limiting toxicities were observed (two at 3·0 mg/kg weekly and two at 3·5 mg/kg on days 1 and 8 every 3 weeks; all were febrile neutropenia), thus the maximum tolerated dose was reached at 3·0 mg/kg on days 1 and 8 every 3 weeks and 6·0 mg/kg on day 1 every 3 weeks. Grade 3 or worse treatment-related adverse events occurred in 139 (71%) of 195 patients; the most common of which were neutropenia (91 [47%]), anaemia (76 [39%]), leukopenia (76 [39%]), and thrombocytopenia (63 [32%]). 52 (27%) patients had a dose reduction and five (3%) patients discontinued treatment due to treatment-related adverse events. One patient was reported as having interstitial lung disease. Treatment-related deaths occurred in three (2%) patients (one due to pneumonia, one due to septic shock, and one due to myelosuppression). In 174 patients evaluated for activity, median follow-up was 6·9 months (IQR 4·5-8·9) and 60 (34%; 95% CI 27-42) patients had an objective response. INTERPRETATION: Our results suggest that BL-B01D1 has preliminary antitumour activity in extensively and heavily treated advanced solid tumours with an acceptable safety profile. Based on the safety and antitumour activity data from both phase 1a and 1b, 2·5 mg/kg on days 1 and 8 every 3 weeks was selected as the recommended phase 2 dose in Chinese patients. FUNDING: Sichuan Baili Pharmaceutical. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Antibodies, Bispecific , ErbB Receptors , Immunoconjugates , Neoplasms , Receptor, ErbB-3 , Humans , Middle Aged , Male , Female , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/adverse effects , Antibodies, Bispecific/therapeutic use , Aged , Adult , Neoplasms/drug therapy , Neoplasms/pathology , Immunoconjugates/administration & dosage , Immunoconjugates/adverse effects , Immunoconjugates/therapeutic use , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/immunology , Receptor, ErbB-3/antagonists & inhibitors , Receptor, ErbB-3/immunology , Young Adult , Maximum Tolerated Dose , Adolescent , Neoplasm Metastasis , China , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/therapeutic use
14.
Chest ; 165(6): e163-e167, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38852972

ABSTRACT

This novel report presents the first known case, to our knowledge, of a 16-year-old male patient who experienced intraventricular thrombosis and pulmonary embolism after a Nuss procedure for pectus excavatum, attributed to chronic bar displacement. Two years after the operation, the patient experienced post-exercise cough and hemoptysis, which led to his admission. Imaging revealed pulmonary embolism, thrombosis in the right ventricular outflow tract, and lung infiltrative lesions. We hypothesize that the chronic bar displacement led to its embedment in the right ventricle, resulting in thrombus formation, which subsequently contributed to partial pulmonary embolism. Surgery revealed the bars' intrusion into the right ventricle and lung. This case highlights the risk of severe complications from bar displacement in the Nuss procedure, which necessitates long-term follow-up evaluation, caution against strenuous activities after surgery, and use of thoracoscopic guidance during bar implantation and removal. It underscores the importance of vigilant evaluation for late-stage complications in patients with respiratory distress or thrombosis after a Nuss procedure.


Subject(s)
Funnel Chest , Pulmonary Embolism , Thrombosis , Humans , Pulmonary Embolism/etiology , Pulmonary Embolism/diagnosis , Male , Adolescent , Funnel Chest/surgery , Thrombosis/etiology , Thrombosis/diagnostic imaging , Thrombosis/diagnosis , Heart Ventricles/diagnostic imaging , Postoperative Complications/etiology , Postoperative Complications/diagnosis , Tomography, X-Ray Computed
15.
Chemosphere ; 361: 142529, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838862

ABSTRACT

A novel nanocomposite consisting of Fe3O4-loaded tin oxyhydroxy-chloride is demonstrated as an efficient adsorbent for the removal of hexavalent chromium in compliance to the new drinking water regulation. This study introduces a continuous-flow production of the nanocomposite through the separate synthesis of (i) 40 nm Fe3O4 nanoparticles and (ii) multilayered spherical arrangements of a tin hydroxy-chloride identified as abhurite, before the application of a wet-blending process. The homogeneous distribution of Fe3O4 nanoparticles on the abhurite's morphology, features nanocomposite with magnetic response whereas the 10 % loaded nanocomposite preserves a Cr(VI) uptake capacity of 7.2 mg/g for residual concentrations below 25 µg/L. Kinetic and thermodynamic examination of the uptake evolution indicates a relative rapid Cr(VI) capture dominated by interparticle diffusion and a spontaneous endothermic process mediated by reduction to Cr(III). The efficiency of the optimized nanocomposite was validated in a pilot unit operating in a sequence of a stirring reactor and a rotary magnetic separator showing an alternative and competitive application path than typical fixed-bed filtration, which is supported by the absence of any acute cellular toxicity according to human kidney cell viability tests.


Subject(s)
Chromium , Drinking Water , Nanocomposites , Water Pollutants, Chemical , Water Purification , Chromium/chemistry , Nanocomposites/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Drinking Water/chemistry , Adsorption , Kinetics , Humans , Thermodynamics
16.
J Agric Food Chem ; 72(25): 14419-14432, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38869198

ABSTRACT

Rapeseed (Brassica napus L.) is extremely sensitive to excessive NH4+ toxicity. There remains incomplete knowledge of the causal factors behind the growth suppression in NH4+-nourished plants, with limited studies conducted specifically on field crop plants. In this study, we found that NH4+ toxicity significantly increased salicylic acid (SA) accumulation by accelerating the conversion of SA precursors. Moreover, exogenous SA application significantly aggravated NH4+ toxicity symptoms in the rapeseed shoots. Genome-wide differential transcriptomic analysis showed that NH4+ toxicity increased the expression of genes involved in the biosynthesis, transport, signaling transduction, and conversion of SA. SA treatment significantly increased shoot NH4+ concentrations by reducing the activities of glutamine synthase and glutamate synthase in NH4+-treated rapeseed plants. The application of an SA biosynthesis inhibitor, ABT, alleviated NH4+ toxicity symptoms. Furthermore, SA induced putrescine (Put) accumulation, resulting in an elevated ratio of Put to [spermidine (Spd) + spermine (Spm)] in the NH4+-treated plants, while the opposite was true for ABT. The application of exogenous Put and its biosynthesis inhibitor DFMA induced opposite effects on NH4+ toxicity in rapeseed shoots. These results indicated that the increased endogenous SA contributed noticeably to the toxicity caused by the sole NH4+-N supply in rapeseed shoots. This study provided fresh perspectives on the mechanism underlying excessive NH4+-induced toxicity and the corresponding alleviating strategies in plants.


Subject(s)
Ammonium Compounds , Brassica napus , Salicylic Acid , Brassica napus/genetics , Brassica napus/growth & development , Brassica napus/metabolism , Brassica napus/drug effects , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Ammonium Compounds/metabolism , Ammonium Compounds/toxicity , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Putrescine/metabolism , Putrescine/pharmacology , Plant Shoots/growth & development , Plant Shoots/drug effects , Plant Shoots/metabolism
17.
J Stroke Cerebrovasc Dis ; : 107830, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909872

ABSTRACT

OBJECTIVES: The objective of this study was to determine factors associated with negative disease-related stigma after hemorrhagic stroke. MATERIALS AND METHODS: Patients with non-traumatic hemorrhage (ICH or SAH) admitted between January 2015 and February 2021 were assessed by telephone 3-months after discharge using the Quality of Life in Neurological Disorders (Neuro-QoL) Negative Disease-Related Stigma Short Form inventory. We evaluated the relationship between disease-related stigma (T-score>50) and pre-stroke demographics, admission data, and poor functional outcome (3-month mRS score 3-5 and Barthel Index <100). RESULTS: We included 89 patients (56 ICH and 33 SAH). The median age was 63 (IQR 50-69), 43% were female, and 67% graduated college. Admission median GCS score was 15 (IQR 13-15) and APACHE II score was 12 (IQR 9-17). 31% had disease-related stigma. On univariate analysis, disease-related stigma was associated with female sex, non-completion of college, GCS score, APACHE II score, and 3-month mRS score (all p<0.05). On multivariate analysis, disease-related stigma was associated with female sex (OR = 3.72, 95% CI = 1.23-11.25, p = 0.02) and 3-month Barthel Index<100 (OR = 3.46, 95% CI = 1.13-10.64, p = 0.03) on one model, and female sex (OR = 3.75, 95% CI = 1.21-11.58, p = 0.02) and 3-month mRS score 3-5 (OR = 4.23, 95% CI = 1.21-14.75, p = 0.02) on a second model. CONCLUSION: Functional outcome and female sex are associated with disease-related stigma 3-months after hemorrhagic stroke. Because stigma may negatively affect recovery, there is a need to understand the relationship between these factors to mitigate stroke-related stigma.

18.
J Proteome Res ; 23(7): 2619-2628, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38910295

ABSTRACT

Chromatography-mass spectrometry-based lipidomics represents an essential tool for elucidating lipid dysfunction mechanisms and is extensively employed in investigating disease mechanisms and identifying biomarkers. However, the detection of low-abundance lipids in biological matrices, along with cumbersome operational procedures, complicates comprehensive lipidomic analyses, necessitating the development of highly sensitive, environmentally friendly, and automated methods. In this study, an online phase transition trapping-supercritical fluid extraction-chromatography-mass spectrometry (PTT-SFEC-MS/MS) method was developed and successfully applied to plasma lipidomics analysis in Type 1 diabetes (T1D) rats. The PTT strategy captured entire extracts at the column head by converting CO2 from a supercritical state to a gaseous state, thereby preventing peak spreading, enhancing peak shape for precise quantification, and boosting sensitivity without any sample loss. This method utilized only 5 µL of plasma and accomplished sample extraction, separation, and detection within 27 min. Ultimately, 77 differential lipids were identified, including glycerophospholipids, sphingolipids, and glycerolipids, in T1D rat plasma. The results indicated that the progression of the disease might be linked to alterations in glycerophospholipid and sphingolipid metabolism. Our findings demonstrated a green, highly efficient, and automated method for the lipidomics analysis of biological samples, providing a scientific foundation for understanding the pathogenesis and diagnosis of T1D.


Subject(s)
Chromatography, Supercritical Fluid , Diabetes Mellitus, Type 1 , Lipidomics , Tandem Mass Spectrometry , Animals , Lipidomics/methods , Tandem Mass Spectrometry/methods , Rats , Chromatography, Supercritical Fluid/methods , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/metabolism , Lipids/blood , Lipids/chemistry , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/metabolism , Male , Rats, Sprague-Dawley , Phase Transition , Biomarkers/blood , Sphingolipids/blood , Sphingolipids/analysis , Sphingolipids/isolation & purification
19.
Sci Total Environ ; 946: 174212, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914325

ABSTRACT

Amid the global surge of eutrophication in lakes, investigating and analyzing water quality and trends of lakes becomes imperative for formulating effective lake management policies. Water quality index (WQI) is one of the most used tools to assess water quality by integrating data from multiple water quality parameters. In this study, we analyzed the spatio-temporal variations of 11 water quality parameters in one of the largest plateau lakes, Erhai Lake, based on surveys from January 2014 to December 2021. Leveraging machine learning models, we gauged the relative importance of different water quality parameters to the WQI and further utilized stepwise multiple linear regression to derive an optimal minimal water quality index (WQImin) that required the minimal number of water quality parameters without compromising the performance. Our results indicated that the water quality of Erhai Lake typically showed a trend towards improvement, as indicated by the positive Mann-Kendall test for WQI performance (Z = 2.89, p < 0.01). Among the five machine learning models, XGBoost emerged as the best performer (coefficient of determination R2 = 0.822, mean squared error = 3.430, and mean absolute error = 1.460). Among the 11 water quality parameters, only four (i.e., dissolved oxygen, ammonia nitrogen, total phosphorus, and total nitrogen) were needed for the optimal WQImin. The establishment of the WQImin helps reduce cost in future water quality monitoring in Erhai Lake, which may also serve as a valuable framework for efficient water quality monitoring in similar waters. In addition, the elucidation of spatio-temporal patterns and trends of Erhai Lake's water quality serves as a compass for authorities, offering insights to bolster lake management strategies in the future.

20.
Biomacromolecules ; 25(7): 4557-4568, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38899740

ABSTRACT

Rheumatoid arthritis (RA) is a complicated chronic disorder of the immune system, featured with severe inflammatory joints, synovium hyperplasia, articular cartilage, and bone damage. In the RA microenvironment, RA-involved cells, overproduced nitric oxide (NO), and pro-inflammatory cytokines are highly interplayed and mutually reinforced, which form a vicious circle and play crucial roles in the formation and progression of RA. To comprehensively break the vicious circle and obtain the maximum benefits, we have developed neutrophil membrane-camouflaged NO scavenging nanoparticles based on an NO-responsive hyaluronic acid derivative for delivery of MTX. These multifunctional nanoparticles (NNO-NPs/MTX), by inheriting the membrane functions of the source cells, possess prolonged circulation and specific localization at the inflamed sites when administrated in the body. Remarkably, NNO-NPs/MTX can neutralize the pro-inflammatory cytokines via the outer membrane receptors, scavenge NO, and be responsively disassociated to release MTX for RA-involved cell regulation and HA for lubrication in the RA sites. In a collagen-induced arthritis mouse model, NNO-NPs/MTX exhibits a significant anti-inflammation effect and effectively alleviates the characteristic RA symptoms such as synovial hyperplasia and cartilage destruction, realizing the synergistic and boosted therapeutic outcome against intractable RA. Thus, NNO-NPs/MTX provides a promising and potent platform to integrately treat RA.


Subject(s)
Arthritis, Rheumatoid , Hyaluronic Acid , Methotrexate , Nitric Oxide , Hyaluronic Acid/chemistry , Animals , Arthritis, Rheumatoid/drug therapy , Mice , Methotrexate/pharmacology , Methotrexate/administration & dosage , Methotrexate/chemistry , Nitric Oxide/metabolism , Nanoparticles/chemistry , Humans , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Drug Delivery Systems/methods , Multifunctional Nanoparticles/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...