Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.879
Filter
1.
Front Oncol ; 14: 1382183, 2024.
Article in English | MEDLINE | ID: mdl-38947886

ABSTRACT

Gastric cancer and gastroesophageal junction cancer represent the leading cause of tumor-related death worldwide. Although advances in immunotherapy and molecular targeted therapy have expanded treatment options, they have not significantly altered the prognosis for patients with unresectable or metastatic gastric cancer. A minority of patients, particularly those with PD-L1-positive, HER-2-positive, or MSI-high tumors, may benefit more from immune checkpoint inhibitors and/or HER-2-directed therapies in advanced stages. However, for those lacking specific targets and unique molecular features, conventional chemotherapy remains the only recommended effective and durable regimen. In this review, we summarize the roles of various signaling pathways and further investigate the available targets. Then, the current results of phase II/III clinical trials in advanced gastric cancer, along with the superiorities and limitations of the existing biomarkers, are specifically discussed. Finally, we will offer our insights in precision treatment pattern when encountering the substantial challenges.

2.
Clin Cosmet Investig Dermatol ; 17: 1519-1526, 2024.
Article in English | MEDLINE | ID: mdl-38948921

ABSTRACT

Vitiligo has been reported to occur in association with lupus erythematosus (LE) and other autoimmune diseases. However, it remains unclear whether this association occurs because of shared immunopathogenesis. We hereby describe a case of discoid lupus erythematosus (DLE) in a 51-year-old man with a 3 years history of skin lesions on his face, arms, and the V zone of the neck, and with the coexistence of vitiligo for 12 years, who developed from DLE to hypertrophic discoid lupus erythematosus (HDLE) after 10 months. We reviewed the previously reported cases to summarize the clinical characteristics of these patients and hope it may provide a reference for dermatologists.

3.
Cell Death Differ ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951701

ABSTRACT

Chronic kidney disease (CKD) is a major global health concern and the third leading cause of premature death. Renal fibrosis is the primary process driving the progression of CKD, but the mechanisms behind it are not fully understood, making treatment options limited. Here, we find that the E3 ligase TRIM65 is a positive regulator of renal fibrosis. Deletion of TRIM65 results in a reduction of pathological lesions and renal fibrosis in mouse models of kidney fibrosis induced by unilateral ureteral obstruction (UUO)- and folic acid. Through screening with a yeast-hybrid system, we identify a new interactor of TRIM65, the mammalian cleavage factor I subunit CFIm25 (NUDT21), which plays a crucial role in fibrosis through alternative polyadenylation (APA). TRIM65 interacts with NUDT21 to induce K48-linked polyubiquitination of lysine 56 and proteasomal degradation, leading to the inhibition of TGF-ß1-mediated SMAD and ERK1/2 signaling pathways. The degradation of NUDT21 subsequently altered the length and sequence content of the 3'UTR (3'UTR-APA) of several pro-fibrotic genes including Col1a1, Fn-1, Tgfbr1, Wnt5a, and Fzd2. Furthermore, reducing NUDT21 expression via hydrodynamic renal pelvis injection of adeno-associated virus 9 (AAV9) exacerbated UUO-induced renal fibrosis in the normal mouse kidneys and blocked the protective effect of TRIM65 deletion. These findings suggest that TRIM65 promotes renal fibrosis by regulating NUDT21-mediated APA and highlight TRIM65 as a potential target for reducing renal fibrosis in CKD patients.

4.
Biochem Biophys Res Commun ; 727: 150313, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38954981

ABSTRACT

Sepsis, a life-threatening condition resulting in multiple organ dysfunction, is characterized by a dysregulated immune response to infection. Current treatment options are limited, leading to unsatisfactory outcomes for septic patients. Here, we present a series of studies utilizing compact bone mesenchymal stem cells (CB-MSCs) and their derived paracrine mediators, especially exosome (CB-MSCs-Exo), to treat mice with cecal ligation and puncture-induced sepsis. Our results demonstrate that CB-MSCs treatment significantly improves the survival rate of septic mice by mitigating excessive inflammatory response and attenuating sepsis-induced organ injuries. Furthermore, CB-MSCs-conditioned medium, CB-MSCs secretome (CB-MSCs-Sec), and CB-MSCs-Exo exhibit potent anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated murine macrophage (RAW264.7). Intriguingly, intravenous administration of CB-MSCs-Exo confers superior protection against inflammation and organ damage in septic mice compared to CB-MSCs in certain aspects. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) shotgun proteomic analysis, we identify a range of characterized proteins derived from the paracrine activity of CB-MSCs, involved in critical biological processes such as immunomodulation and apoptosis. Our findings highlight that the paracrine products of CB-MSCs could serve as a promising cell-free therapeutic agent for sepsis.

5.
Sci Rep ; 14(1): 13398, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862626

ABSTRACT

Uncaria rhynchophylla is an important traditional herbal medicine in China, and the yield and quality of Uncaria rhynchophylla can be improved by suitable soil conditioners because of changing the soil properties. In this paper, Uncaria rhynchophylla associated alkaloids and soil microbial  communities were investigated. The field experiment was set up with the following control group: (M1, no soil conditioner) and different soil conditioner treatment groups (M2, biomass ash; M3, water retention agent; M4, biochar; M5, lime powder and M6, malic acid). The results showed that M2 significantly increased the fresh and dry weight and the contents of isorhynchophylline, corynoxeine, isocorynoxeine, and total alkaloids. Acidobacteria, Proteobacteria, Actinobacteria, and Chloroflexi were major bacterial phyla. Correlation analysis showed that fresh and dry weight was significantly positively correlated with Acidobacteria, while alkali-hydrolyzable nitrogen, phosphatase activity, fresh and dry weight, corynoxeine, and isocorynoxeine were significantly negatively correlated with Chloroflexi. The application of soil conditioner M2 increased the abundance of Acidobacteria and decreased the abundance of Chloroflexi, which contributed to improving the soil nutrient content, yield, and quality of Uncaria rhynchophylla. In summary, biomass ash may be a better choice of soil conditioner in Uncaria rhynchophylla growing areas.


Subject(s)
Soil Microbiology , Soil , Uncaria , Soil/chemistry , Uncaria/chemistry , Biomass , Microbiota , Alkaloids/analysis , Charcoal/chemistry , Bacteria/classification , Bacteria/metabolism , China , Nitrogen/analysis , Nitrogen/metabolism
6.
J Int Med Res ; 52(6): 3000605241260551, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863132

ABSTRACT

Pregnant women with severe osteogenesis imperfecta (OI) are uncommon, and there are limited data regarding anaesthesia for caesarean section in these high-risk individuals. The presence of anatomical and physiological abnormalities can pose technical challenges for the anaesthetist. This report describes the successful implementation of epidural anaesthesia in a parturient with severe OI. To our knowledge, this is the first documented use of ultrasound-assisted neuraxial anaesthesia and wrist blood pressure monitoring in such patients undergoing caesarean section. Understanding the pathophysiological changes associated with OI is crucial for ensuring safe administration of anaesthesia to these women.


Subject(s)
Cesarean Section , Osteogenesis Imperfecta , Humans , Osteogenesis Imperfecta/complications , Osteogenesis Imperfecta/diagnostic imaging , Female , Pregnancy , Adult , Pregnancy Complications/diagnostic imaging , Anesthesia, Epidural/methods , Anesthesia, Obstetrical/methods , Anesthetists
7.
Biomed Pharmacother ; 177: 116859, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879892

ABSTRACT

Phellinus igniarius is an important medicinal and edible fungus with diverse biological activities. This study aimed to investigate the effects of aqueous extract from P. igniarius (API) on the treatment of hyperuricemia (HUA) and related kidney damage. The chemical constituents of API were determined. The therapeutic effects of API on HUA and renal injury were assessed in adenine/potassium oxonate (PO)-treated mice. The constituent analysis of API revealed a predominance of polysaccharides (33.4 %), followed by total flavonoids (9.1 %), and total triterpenoids (3.5 %). Compared to control, the adenine/PO treatment greatly elevated serum uric acid (UA) levels but this elevation was attenuated by API. In the liver, the expression and activity of xanthine oxidase (XOD) were increased by HUA which were diminished by API. Furthermore, API was found to enhance the expression of UA transporter ABCG2 in the kidney and intestine of HUA mice, suggesting elevating UA excretion. Additionally, API ameliorated HUA-induced renal injury, as indicated by reduced serum BUN/creatinine levels, decreased glomerular and tubular damage, and lowered fibrotic levels. Network pharmacology analysis predicted that P. igniarius may regulate mitochondrial function to improve HUA-related renal injury. This prediction was then substantialized by the API-induced upregulation of NAD+/NADH ratio, ATP level, SOD2 activity, and expression of SOD2/PCG-1α/PPARγ in the kidney of HUA mice. Our results demonstrate that API may effectively ameliorate HUA by reducing UA production in the liver and enhancing UA excretion in the kidney and intestine, and it might be a potential therapy to HUA-related renal injury.

8.
Poult Sci ; 103(8): 103910, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38905756

ABSTRACT

Within the poultry industry, hens' reproductive performance is of great economic significance. The development and growth of follicles is a key aspect of hen egg production, and ovarian follicle growth and development are closely associated with granulosa cells (GCs) proliferation and the synthesis of steroid hormones. It has been confirmed by numerous studies that microRNAs (miRNAs) play important roles in the steroid hormone synthesis and proliferation of GCs. In this study, we examined the main miRNAs influencing hens' ability to reproduce, identified the miR-223 that is mainly expressed in atretic follicles based on sequencing, and investigated its role in GCs. Then, we used miR-223 mimic and inhibitor to knockdown or overexpress miR-223 expression. The result showed that miR-223 significantly inhibits both the steroid hormone synthesis and the proliferation of GCs. Subsequently, the results of the dual luciferase reporter experiment and bioinformatics prediction demonstrated that cysteine rich transmembrane BMP regulator 1 (CRIM1) was a downstream target gene of miR-223, and overexpression of miR-223 prevented CRIM1 expression. The function of CRIM1 was further investigated, and we observed a significant reduction in the synthesis of steroid hormones and the proliferation of GCs after transfection with CRIM1 siRNA. The opposite function of miR-223 was observed for CRIM1 in our study. Additionally, we demonstrated the involvement of the miR-223/CRIM1 axis in GCs through modulation of the AKT signaling pathway. Our data demonstrate the pivotal role of the miR-223 in the proliferation and steroid hormone synthesis of chicken GCs, which helps to explain how non-coding RNA (ncRNA) affects chicken reproductive function.

9.
Lipids Health Dis ; 23(1): 194, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909243

ABSTRACT

BACKGROUND: Lipid droplet (LD)-laden microglia is a key pathological hallmark of multiple sclerosis. The recent discovery of this novel microglial subtype, lipid-droplet-accumulating microglia (LDAM), is notable for increased inflammatory factor secretion and diminished phagocytic capability. Lipophagy, the autophagy-mediated selective degradation of LDs, plays a critical role in this context. This study investigated the involvement of microRNAs (miRNAs) in lipophagy during demyelinating diseases, assessed their capacity to modulate LDAM subtypes, and elucidated the potential underlying mechanisms involved. METHODS: C57BL/6 mice were used for in vivo experiments. Two weeks post demyelination induction at cervical level 4 (C4), histological assessments and confocal imaging were performed to examine LD accumulation in microglia within the lesion site. Autophagic changes were observed using transmission electron microscopy. miRNA and mRNA multi-omics analyses identified differentially expressed miRNAs and mRNAs under demyelinating conditions and the related autophagy target genes. The role of miR-223 in lipophagy under these conditions was specifically explored. In vitro studies, including miR-223 upregulation in BV2 cells via lentiviral infection, validated the bioinformatics findings. Immunofluorescence staining was used to measure LD accumulation, autophagy levels, target gene expression, and inflammatory mediator levels to elucidate the mechanisms of action of miR-223 in LDAM. RESULTS: Oil Red O staining and confocal imaging revealed substantial LD accumulation in the demyelinated spinal cord. Transmission electron microscopy revealed increased numbers of autophagic vacuoles at the injury site. Multi-omics analysis revealed miR-223 as a crucial regulatory gene in lipophagy during demyelination. It was identified that cathepsin B (CTSB) targets miR-223 in autophagy to integrate miRNA, mRNA, and autophagy gene databases. In vitro, miR-223 upregulation suppressed CTSB expression in BV2 cells, augmented autophagy, alleviated LD accumulation, and decreased the expression of the inflammatory mediator IL-1ß. CONCLUSION: These findings indicate that miR-223 plays a pivotal role in lipophagy under demyelinating conditions. By inhibiting CTSB, miR-223 promotes selective LD degradation, thereby reducing the lipid burden and inflammatory phenotype in LDAM. This study broadens the understanding of the molecular mechanisms of lipophagy and proposes lipophagy induction as a potential therapeutic approach to mitigate inflammatory responses in demyelinating diseases.


Subject(s)
Autophagy , Cathepsin B , Demyelinating Diseases , Lipid Droplets , Lysophosphatidylcholines , Mice, Inbred C57BL , MicroRNAs , Microglia , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Microglia/metabolism , Microglia/pathology , Mice , Lipid Droplets/metabolism , Demyelinating Diseases/metabolism , Demyelinating Diseases/chemically induced , Demyelinating Diseases/genetics , Demyelinating Diseases/pathology , Cathepsin B/metabolism , Cathepsin B/genetics , Lysophosphatidylcholines/metabolism , Disease Models, Animal , Male , Gene Expression Regulation , Cell Line
10.
J Cancer Res Clin Oncol ; 150(6): 318, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38914714

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is renowned for its formidable and lethal nature, earning it a notorious reputation among malignant tumors. Due to its challenging early diagnosis, high malignancy, and resistance to chemotherapy drugs, the treatment of pancreatic cancer has long been exceedingly difficult in the realm of oncology. γ-Glutamyl cyclotransferase (GGCT), a vital enzyme in glutathione metabolism, has been implicated in the proliferation and progression of several tumor types, while the biological function of GGCT in pancreatic ductal adenocarcinoma remains unknown. METHODS: The expression profile of GGCT was validated through western blotting, immunohistochemistry, and RT-qPCR in both pancreatic cancer tissue samples and cell lines. Functional enrichment analyses including GSVA, ssGSEA, GO, and KEGG were conducted to explore the biological role of GGCT. Additionally, CCK8, Edu, colony formation, migration, and invasion assays were employed to evaluate the impact of GGCT on the proliferation and migration abilities of pancreatic cancer cells. Furthermore, the LASSO machine learning algorithm was utilized to develop a prognostic model associated with GGCT. RESULTS: Our study revealed heightened expression of GGCT in pancreatic cancer tissues and cells, suggesting an association with poorer patient prognosis. Additionally, we explored the immunomodulatory effects of GGCT in both pan-cancer and pancreatic cancer contexts, found that GGCT may be associated with immunosuppressive regulation in various types of tumors. Specifically, in patients with high expression of GGCT in pancreatic cancer, there is a reduction in the infiltration of various immune cells, leading to poorer responsiveness to immunotherapy and worse survival rates. In vivo and in vitro assays indicate that downregulation of GGCT markedly suppresses the proliferation and metastasis of pancreatic cancer cells. Moreover, this inhibitory effect appears to be linked to the regulation of GGCT on c-Myc. A prognostic model was constructed based on genes derived from GGCT, demonstrating robust predictive ability for favorable survival prognosis and response to immunotherapy.


Subject(s)
Carcinoma, Pancreatic Ductal , Disease Progression , Immunotherapy , Pancreatic Neoplasms , gamma-Glutamylcyclotransferase , Humans , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/drug therapy , gamma-Glutamylcyclotransferase/metabolism , gamma-Glutamylcyclotransferase/genetics , Immunotherapy/methods , Cell Proliferation , Prognosis , Cell Line, Tumor , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Female , Gene Expression Regulation, Neoplastic , Male , Cell Movement , Multiomics
11.
Front Mol Biosci ; 11: 1423795, 2024.
Article in English | MEDLINE | ID: mdl-38887280

ABSTRACT

Introduction: Acetyl-CoA synthetase 2 (ACSS2), one of the enzymes that catalyze the conversion of acetate to acetyl-CoA, has been proved to be an oncogene in various cancers. However, the function of ACSS2 is still largely a black box in melanoma. Methods: The ACSS2 expression was detected in melanoma cells and melanocytes at both protein and mRNA levels. Cell viability, apoptosis, migration and invasion were investigated after ACSS2 knockdown. RNA sequencing (RNA-Seq) technology was employed to identify differentially expressed genes caused by ACSS2 knockdown, which were then verified by immunoblotting analysis. Animal experiments were further performed to investigate the influence of ACSS2 on tumor growth and metastasis in vivo. Results: Firstly, we found that ACSS2 was upregulated in most melanoma cell lines compared with melanocytes. In addition, ACSS2 knockdown dramatically suppressed melanoma cell migration and invasion, whereas promoted cell apoptosis in response to endoplasmic reticulum (ER) stress. Furthermore, tumor growth and metastasis were dramatically suppressed by ACSS2 knockdown in vivo. RNA-Seq suggested that the Hippo pathway was activated by ACSS2 knockdown, which was forwardly confirmed by Western blotting and rescue experiments. Taken together, we demonstrated that ACSS2 enables melanoma cell survival and tumor metastasis via the regulation of the Hippo pathway. Discussion: In summary, this study demonstrated that ACSS2 may promote the growth and metastasis of melanoma by negatively regulating the Hippo pathway. Targeting ACSS2 may be a promising target for melanoma treatment.

12.
mSphere ; 9(6): e0031724, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38837389

ABSTRACT

The emerging prevalence of drug-resistant Staphylococcus aureus isolates underscores the urgent need for alternative therapeutic strategies due to the declining effectiveness of traditional antibiotics in clinical settings. MgrA, a key virulence regulator in S. aureus, orchestrates the expression of numerous virulence factors. Here, we report the discovery of isorhapontigenin, a methoxylated analog of resveratrol, as a potential anti-virulence agent against S. aureus. Isorhapontigenin effectively inhibits the hemolytic activity of S. aureus in a non-bactericidal manner. Additionally, it significantly reduces the cytotoxicity of S. aureus and impairs its ability to survive in macrophages. Mechanistically, isorhapontigenin modulates the expression of virulence factors, dose-dependently downregulating hla and upregulating the MgrA-regulated gene spa. Electrophoretic mobility shift assays demonstrated that isorhapontigenin inhibits the binding of MgrA to the hla promoter in a dose-dependent manner. Thermal shift assays confirmed the direct interaction between isorhapontigenin and the MgrA protein. The in vivo experiments demonstrated that isorhapontigenin significantly reduced the area of skin abscesses and improved survival in a pneumonia model while decreasing bacterial burden and inflammation in the lungs. In conclusion, isorhapontigenin holds potential as a candidate drug for further development as an anti-virulence agent for treating S. aureus infections. IMPORTANCE: The emergence of antibiotic-resistant Staphylococcus aureus strains presents a formidable challenge to public health, necessitating novel approaches in combating these pathogens. Traditional antibiotics are becoming increasingly ineffective, leading to a pressing need for innovative therapeutic strategies. In this study, targeting virulence factors that play a crucial role in the pathogenesis of bacterial infections offers a promising alternative to circumvent resistance mechanisms. The discovery of isorhapontigenin as an inhibitor of S. aureus virulence represents a significant advance in anti-virulence therapy.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Gene Expression Regulation, Bacterial , Staphylococcal Infections , Staphylococcus aureus , Virulence Factors , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/genetics , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Virulence/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Animals , Mice , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Gene Expression Regulation, Bacterial/drug effects , Stilbenes/pharmacology , Humans , Macrophages/microbiology , Macrophages/drug effects , Female , Mice, Inbred BALB C , RAW 264.7 Cells
13.
Food Funct ; 15(13): 7161-7173, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38888609

ABSTRACT

Proteins and peptides play vital roles in different biological processes in vivo. As a dynamic hydrolysis system, milk is rich in proteins and proteases and provides a constant supply of endogenous bioactive peptides to newborn mammals. Previous studies have primarily focused on researching bioactive peptides by adding exogenous enzymes to milk samples. However, such an approach overlooks the significance of endogenous peptides and parent proteins that naturally exist in milk. Herein, we analyzed and compared parent proteins and their releasing peptides in human colostrum (HC), bovine colostrum (BC), and donkey colostrum (DC). The predominant proteins and hydrolyzed peptides in the three types of milk were identified. Among them, peptides were found to possess common bioactivities, including ACE inhibitory, antioxidant, antibacterial and immunomodulatory properties in HC, BC, and DC. Furthermore, the biological functions of these parent proteins were clarified using bioinformatics. These insights offer a novel perspective on natural bioactive peptides and the potential utilization of specific parent proteins and peptides to develop infant formulae derived from diverse milk sources.


Subject(s)
Colostrum , Equidae , Milk Proteins , Peptides , Proteolysis , Colostrum/chemistry , Animals , Humans , Cattle , Milk Proteins/metabolism , Milk Proteins/chemistry , Peptides/metabolism , Peptides/analysis , Female , Milk, Human/chemistry
14.
Drug Des Devel Ther ; 18: 2215-2225, 2024.
Article in English | MEDLINE | ID: mdl-38882049

ABSTRACT

Objective: While the role of aldosterone in bone metabolism is well established, the specific effects of the widely used aldosterone antagonist, spironolactone, on bone health are not fully understood. This study aimed to investigate the effects of spironolactone on osteoporosis and future fracture risk in middle-aged and elderly hypertensive patients, revealing its potential benefits for bone health. Methods: Propensity score matching was employed in this study to create matched groups of spironolactone users and non-users at a 1:4 ratio. We investigated the association between spironolactone use and the risk of osteoporosis using multivariate logistic regression analysis. Furthermore, we conducted multivariate linear regression analysis to explore the relationship between cumulative dosage and the FRAX score. Subgroup analysis was also performed to assess the effects under different stratification conditions. Results: In both pre-match and post-match analyses, multivariable logistic regression revealed a significant reduction in the risk of osteoporosis in the spironolactone usage group (pre-match: odds ratios [OR] 0.406, 95% confidence interval [CI], 0.280-0.588; post-match: OR 0.385, 95% CI, 0.259-0.571). Furthermore, post-match multivariable linear regression demonstrated a clear negative correlation between cumulative spironolactone dosage and the FRAX score. Subgroup analyses consistently supported these findings. Conclusion: This study offers evidence supporting the significant positive impact of the antihypertensive drug spironolactone on bone health, resulting in a substantial reduction in the risk of osteoporosis and future fractures in hypertensive patients. Future research should consider conducting large-scale, multicenter, randomized controlled trials to further investigate the long-term effects of spironolactone on bone health in hypertensive patients.


Subject(s)
Hypertension , Osteoporosis , Spironolactone , Humans , Spironolactone/therapeutic use , Spironolactone/pharmacology , Spironolactone/adverse effects , Hypertension/drug therapy , Osteoporosis/drug therapy , Female , Male , Aged , Middle Aged , Fractures, Bone/prevention & control , Risk Factors
15.
Arch Microbiol ; 206(7): 289, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847838

ABSTRACT

Staphylococcus epidermidis is an opportunistic pathogen commonly implicated in medical device-related infections. Its propensity to form biofilms not only leads to chronic infections but also exacerbates the issue of antibiotic resistance, necessitating high-dose antimicrobial treatments. In this study, we explored the use of diclofenac sodium, a non-steroidal anti-inflammatory drug, as an anti-biofilm agent against S. epidermidis. In this study, crystal violet staining and confocal laser scanning microscope analysis showed that diclofenac sodium, at subinhibitory concentration (0.4 mM), significantly inhibited biofilm formation in both methicillin-susceptible and methicillin-resistant S. epidermidis isolates. MTT assays demonstrated that 0.4 mM diclofenac sodium reduced the metabolic activity of biofilms by 25.21-49.01% compared to untreated controls. Additionally, the treatment of diclofenac sodium resulted in a significant decrease (56.01-65.67%) in initial bacterial adhesion, a crucial early phase of biofilm development. Notably, diclofenac sodium decreased the production of polysaccharide intercellular adhesin (PIA), a key component of the S. epidermidis biofilm matrix, in a dose-dependent manner. Real-time quantitative PCR analysis revealed that diclofenac sodium treatment downregulated biofilm-associated genes icaA, fnbA, and sigB and upregulated negative regulatory genes icaR and luxS, providing potential mechanistic insights. These findings indicate that diclofenac sodium inhibits S. epidermidis biofilm formation by affecting initial bacterial adhesion and the PIA synthesis. This underscores the potential of diclofenac sodium as a supplementary antimicrobial agent in combating staphylococcal biofilm-associated infections.


Subject(s)
Anti-Bacterial Agents , Biofilms , Diclofenac , Staphylococcus epidermidis , Biofilms/drug effects , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/physiology , Diclofenac/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Bacterial Adhesion/drug effects , Humans , Polysaccharides, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Gene Expression Regulation, Bacterial/drug effects
16.
Proc Natl Acad Sci U S A ; 121(25): e2314036121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38857391

ABSTRACT

Permafrost regions contain approximately half of the carbon stored in land ecosystems and have warmed at least twice as much as any other biome. This warming has influenced vegetation activity, leading to changes in plant composition, physiology, and biomass storage in aboveground and belowground components, ultimately impacting ecosystem carbon balance. Yet, little is known about the causes and magnitude of long-term changes in the above- to belowground biomass ratio of plants (η). Here, we analyzed η values using 3,013 plots and 26,337 species-specific measurements across eight sites on the Tibetan Plateau from 1995 to 2021. Our analysis revealed distinct temporal trends in η for three vegetation types: a 17% increase in alpine wetlands, and a decrease of 26% and 48% in alpine meadows and alpine steppes, respectively. These trends were primarily driven by temperature-induced growth preferences rather than shifts in plant species composition. Our findings indicate that in wetter ecosystems, climate warming promotes aboveground plant growth, while in drier ecosystems, such as alpine meadows and alpine steppes, plants allocate more biomass belowground. Furthermore, we observed a threefold strengthening of the warming effect on η over the past 27 y. Soil moisture was found to modulate the sensitivity of η to soil temperature in alpine meadows and alpine steppes, but not in alpine wetlands. Our results contribute to a better understanding of the processes driving the response of biomass distribution to climate warming, which is crucial for predicting the future carbon trajectory of permafrost ecosystems and climate feedback.


Subject(s)
Biomass , Ecosystem , Permafrost , Tibet , Wetlands , Plants/metabolism , Climate Change , Temperature , Carbon Cycle , Plant Development/physiology , Soil/chemistry , Grassland
17.
Metab Brain Dis ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842662

ABSTRACT

Inhibitor of apoptosis stimulating protein of p53 (iASPP) is related to the pathogenesis of several neurological disorders by affecting the oxidative stress and survival of neurons. However, whether iASPP has a role in Parkinson disease (PD) remains to be determined. This work explored the potential regulatory effect of iASPP in an in vitro model of PD based on 1-methyl-4-phenylpyridinium (MPP+)-evoked neurotoxicity of dopaminergic neurons in culture. MN9D neurons were treated with MPP+ at 200 µM in the culture media for 24 h to induce neurotoxicity. Overexpression and silencing of iASPP in neurons were achieved by infecting recombinant adenovirus expressing iASPP and sh-iASPP, respectively. Protein expression was examined by immunoblotting. MPP+-evoked neurotoxicity of dopaminergic neurons was determined by cell viability, TUNEL, and flow cytometric assays. The transcriptional activity of nuclear erythroid factor 2-like 2 (Nrf2) was assessed by luciferase reporter assay. Kelch-like ECH-associated protein 1 (Keap1)-knockout neurons were generated by lentiCRISPR/Cas9-Keap1 constructs. Expression levels of iASPP declined in MPP+-stimulated neurons. Overexpression of iASPP in neurons exhibited inhibitory effects on MPP+-evoked apoptosis, α-synuclein accumulation, and oxidative stress, while iASPP-deficient neurons were more sensitive to MPP+-induced neurotoxicity. Overexpression of iASPP led to an enhancing effect on Nrf2 activation in MPP+-stimulated neurons. Mechanism research revealed that iASPP may contribute to the activation of Nrf2 by competing with Nrf2 in binding with Keap1. Notably, the regulatory effect of iASPP on Nrf2 was diminished in Keap1-knockout neurons. The chemical inhibition of Nrf2 or knockdown of Nrf2 abrogated the protective effects of iASPP on MPP+-induced neurotoxicity. To conclude, iASPP protects dopaminergic neurons against MPP+-induced neurotoxicity through modulation of the Keap1/Nrf2 axis. Therefore, iASPP may play a crucial role in mediating the loss of dopaminergic neurons in PD, and targeting the iASPP-Nrf2 axis could be a promising strategy for treating PD.

18.
Phytomedicine ; 130: 155560, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38815404

ABSTRACT

BACKGROUND: Quercetin, the key ingredient in Xiaoyao Kangai Jieyu Formula, has been previously found to relieve breast cancer-related depression (BCRD). PURPOSE: We want to explore the potential mechanisms and therapeutic targets of quercetin alleviating BCRD. METHODS: BALB/c mice were injected subcutaneously with 4T1 cells and corticosterone (CORT) to create a BCRD mice model. The primary hippocampal neurons were co-induced with 10 µg/ml lipopolysaccharide (LPS) and 200 µM CORT for 6 h to establish an in vitro model of BCRD. Quercetin was applied to explore its effect on disease symptoms, gut microbiota, and lipid metabolism of BCRD mice. Lipid metabolism-related genes were screened based on network pharmacology. Molecular docking was employed to prove whether quercetin bound to prostaglandin-endoperoxide synthase 2 (PTGS2). PTGS2 overexpression was carried out to explore the underlying mechanism of quercetin treatment on BCRD. RESULTS: Quercetin treatment not only altered the composition and abundance of gut microbiota but also alleviated abnormal lipid metabolism in BCRD mice. In particular, quercetin down-regulated BCRD and lipid metabolism-related genes screened by network pharmacology, especially PTGS2. Further, molecular docking verified the stable binding between quercetin and PTGS2. In hippocampal neurons, quercetin promoted proliferation but reduced ferroptosis-related markers (total Fe, Fe2+, MDA, and ROS) levels by targeting PTGS2. In BCRD mice, quercetin reduced the high immobility time and increased the sucrose preference rate and serotonin (5-HT), dopamine (DA), and noradrenaline (NE) levels. Meanwhile, quercetin increased CD4+/CD8+ T cells ratio and IL-2 and IFN-γ levels but reduced CA153 and IL-10 levels to alleviate BCRD development. However, PTGS2 overexpression reversed these effects of quercetin on BCRD. CONCLUSION: Quercetin inhibited neuronal ferroptosis and promoted immune responses in BCRD mice by targeting the lipid metabolism-related gene PTGS2. This provided a reference for quercetin in the treatment of BCRD.


Subject(s)
Cyclooxygenase 2 , Depression , Ferroptosis , Gastrointestinal Microbiome , Lipid Metabolism , Mice, Inbred BALB C , Molecular Docking Simulation , Neurons , Quercetin , Animals , Quercetin/pharmacology , Quercetin/analogs & derivatives , Ferroptosis/drug effects , Female , Lipid Metabolism/drug effects , Mice , Cyclooxygenase 2/metabolism , Neurons/drug effects , Gastrointestinal Microbiome/drug effects , Depression/drug therapy , Breast Neoplasms/drug therapy , Hippocampus/drug effects , Hippocampus/metabolism , Cell Line, Tumor , Disease Models, Animal
19.
Postgrad Med ; 136(4): 406-416, 2024 May.
Article in English | MEDLINE | ID: mdl-38753519

ABSTRACT

OBJECTIVES: This study sought to investigate the relationship between the systemic inflammatory response index (SIRI) and bone mineral density (BMD), osteoporosis, and future fracture risk in elderly hypertensive patients. METHODS: Elderly hypertensive patients (age ≥60 years) who attended our hospital between January 2021 and December 2023 and completed BMD screening were included in the study. Analyses were performed with multivariate logistic and linear regression. RESULTS: The multiple linear regression indicated that SIRI levels were significantly negatively correlated with lumbar 1 BMD (ß = -0.15, 95% CI: -0.24, -0.05), lumbar 2 BMD (ß = -0.15, 95% CI: -0.24, -0.05), lumbar 3 BMD (ß = -1.35, 95% CI: -0.23, -0.02), lumbar 4 BMD (ß = -0.11, 95% CI: -0.30, -0.10), femur neck BMD (ß = -0.11, 95% CI: -0.18, -0.05) and Ward's triangle BMD (ß = -0.12, 95% CI: -0.20, -0.05) among elderly hypertensive patients, after fully adjusting for confounders. Furthermore, we observed that SIRI was positively associated with future fracture risk in elderly hypertensive patients. Specifically, SIRI was associated with an increased risk of major osteoporotic fractures (ß = 0.33) and hip fractures (ß = 0.25). The logistic regression analysis indicated that there is an association between the SIRI level and an increased risk of osteoporosis (OR = 1.60, 95% CI = 1.37, 1.87), after fully adjusting for confounders. CONCLUSIONS: Our findings indicate a potential association between SIRI and BMD, osteoporosis, and the risk of future fractures in elderly hypertensive patients. However, further studies are warranted to confirm these findings.


Subject(s)
Bone Density , Hypertension , Osteoporosis , Humans , Female , Male , Aged , Osteoporosis/epidemiology , Hypertension/epidemiology , Hypertension/complications , Middle Aged , Risk Factors , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/etiology , Risk Assessment/methods , Aged, 80 and over , Systemic Inflammatory Response Syndrome/epidemiology , Lumbar Vertebrae/diagnostic imaging , Absorptiometry, Photon
20.
J Invertebr Pathol ; 205: 108129, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754546

ABSTRACT

Bacillus thuringiensis (Bt) Cry2Aa is a member of the Cry pore-forming, 3-domain, toxin family with activity against both lepidopteran and dipteran insects. Although domains II and III of the Cry toxins are believed to represent the primary specificity determinant through specific binding to cell receptors, it has been proposed that the pore-forming domain I of Cry2Aa also has such a role. Thus, a greater understanding of the functions of Cry2Aa's different domains could potentially be helpful in the rational design of improved toxins. In this work, cry2Aa and its domain fragments (DI, DII, DIII, DI-II and DII-DIII) were subcloned into the vector pGEX-6P-1 and expressed in Escherichia coli. Each protein was recognized by anti-Cry2Aa antibodies and, except for the DII fragment, could block binding of the antibody to Cry2Aa. Cry2Aa and its DI and DI-II fragments bound to brush border membrane vesicles (BBMV) from H. armigera and also to a ca 150 kDa BBMV protein on a far western (ligand) blot. In contrast the DII, DIII and DII-III fragments bound to neither of these. None of the fragments were stable in H. armigera gut juice nor showed any toxicity towards this insect. Our results indicate that contrary to the general model of Cry toxin activity domain I plays a role in the binding of the toxin to the insect midgut.


Subject(s)
Bacillus thuringiensis Toxins , Bacterial Proteins , Endotoxins , Hemolysin Proteins , Moths , Animals , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Bacillus thuringiensis Toxins/metabolism , Bacterial Proteins/metabolism , Moths/metabolism , Moths/microbiology , Binding Sites , Bacillus thuringiensis/metabolism , Pest Control, Biological , Protein Domains , Helicoverpa armigera
SELECTION OF CITATIONS
SEARCH DETAIL
...