Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.609
Filter
1.
Nanoscale ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963285

ABSTRACT

I-III-VI quantum dots (QDs) have gained widespread attention owing to their significant advantages of non-toxicity, large structural tolerance, and efficient photoluminescence potential. However, the disbalance of reactivity between the elements will result in undesired products and compromised optical properties. Reducing the activity of highly reactive group IB elements is the most common approach, but it will reduce the overall reactivity and lead to a wide dispersion of QD sizes. In this study, we propose a method to improve the overall reactivity of the reaction system using the highly active IIIA precursor InI3, which triggers rapid nucleation and promotes the formation of Ag(In,Ga)S2 (AIGS) QDs, resulting in monodisperse particle size distributions and a significantly improved photoluminescence quantum yield (PLQY) (from 12% to 72%). Furthermore, narrow band edge emission is realized by coating a gallium sulfide (GaSx) shell on the basis of obtaining high-quality AIGS QDs. The core/shell QDs exhibit a 90% PLQY with a full width at half maximum (FWHM) of only 31 nm at 530 nm. This study provides a viable design strategy to synthesize monodisperse AIGS QDs with a narrow peak width and efficient luminescence, promoting the application of AIGS QDs in the field of luminescent displays.

2.
Int J Biol Macromol ; 274(Pt 2): 133563, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950803

ABSTRACT

Removing heavy metals from aqueous solutions has drawn more and more attentions these years because of their serious global health challenge to human society. To develop an adsorbent with green, stable and high-efficiency for adsorption of heavy metals, pectin ß-cyclodextrin composite was successfully prepared and used for Zn2+ and Cu2+ adsorption for the first time. Various variables that influence the adsorption performance were explored, and the optimal adsorption conditions were determined. According to the pseudo-second-order kinetic model, the adsorption process of Zn2+ and Cu2+ by the adsorbent was mainly chemical adsorption. The adsorbent adsorption process was an exothermic and non-spontaneous process. According to the Langmuir isotherm model, the maximum adsorption capacity was 12.51 ± 0.33 and 24.98 ± 0.23 mg/g for Zn2+ and Cu2+, respectively. The FTIR, EDX and XPS results revealed that the main mechanisms of removing pollutants by adsorbent were ion exchange and coordination. In addition, electrostatic attraction and chelation were present in the adsorption process. After five adsorption desorption cycles, the pectin ß-cyclodextrin composite adsorbent still exhibited adsorption and regeneration capabilities. This study provides a low-cost, effective and simple method for preparation of modified pectin, which has excellent application potential in the removal of heavy metal ions from wastewater.

3.
Blood Press Monit ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38958497

ABSTRACT

OBJECTIVE: We aimed to investigate the correlation between long-term blood pressure variability (BPV) and the risk of cardiovascular diseases (CVDs) among population with different blood pressure statuses (normotension, well-controlled hypertension, and uncontrolled hypertension). METHODS: In this ambispective cohort study, CVD-free residents aged over 50 years were consecutively enrolled from two community health service centers (CHCs) in Tianjin, China from April 2017 to May 2017. Information on blood pressure was retrospectively extracted from electronic medical records of CHCs between January 2010 and May 2017, and the occurrence of new-onset CVDs was prospectively observed during follow-up until September 2019. Long-term variation of SBP and DBP was assessed using four indicators: SD, coefficient of variation (CV), average successive variability (ASV), and average real variability (ARV). Cox proportional hazards regression model was developed to identify the potential impact of BPV on the incidence of CVDs. The receiver operating characteristic curve (ROC) was utilized to evaluate the predictive value of BPV indicators for the occurrence of CVDs. RESULTS: Of 1275 participants included, 412 (32.3%) experienced new CVD events during the median 7.7 years of follow-up, with an incidence density of 499/10 000 person-year in the whole cohort. Cox regression analysis revealed that almost all SBP and DBP variability indicators (except for SBP-SD) were significantly related to the risk of CVDs, especially among individuals with well-controlled hypertension. A trend toward an increased risk of CVDs across BPV quartiles was also observed. Moderate predictive abilities of BPV were observed, with the area under ROC curves ranging between 0.649 and 0.736. For SBP variability, SD had the lowest predictive ability, whereas for DBP variability, ARV had the lowest predictive ability. No significant association of CVDs with SBP-SD was found in all analyses, no matter as a continuous or categorical variable. CONCLUSION: Elevated long-term BPV is associated with an increased risk of CVDs, especially among individuals with well-controlled hypertension. CV and ASV had higher predictive values than SD and ARV.

4.
J Bone Joint Surg Am ; 106(13): 1189-1196, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958660

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) and spinal degenerative disorders (SDD) are common diseases that frequently coexist. However, both traditional observational studies and recent Mendelian randomization (MR) studies have demonstrated conflicting evidence on the association between T2DM and SDD. This comparative study explored and compared the association between T2DM and SDD using observational and MR analyses. METHODS: For observational analyses, cross-sectional studies (44,972 participants with T2DM and 403,095 participants without T2DM), case-control studies (38,234 participants with SDD and 409,833 participants without SDD), and prospective studies (35,550 participants with T2DM and 392,046 participants without T2DM with follow-up information until 2022) were performed to test the relationship between T2DM and SDD using individual-level data from the U.K. Biobank from 2006 to 2022. For MR analyses, the associations between single-nucleotide polymorphisms with SDD susceptibility obtained using participant data from the U.K. Biobank, which had 407,938 participants from 2006 to 2022, and the FinnGen Consortium, which had 227,388 participants from 2017 to 2022, and genetic predisposition to T2DM obtained using summary statistics from a pooled genome-wide association study involving 1,407,282 individuals were examined. The onset and severity of T2DM are not available in the databases being used. RESULTS: Participants with T2DM were more likely to have SDD than their counterparts. Logistic regression analysis identified T2DM as an independent risk factor for SDD, which was confirmed by the Cox proportional hazard model results. However, using single-nucleotide polymorphisms as instruments, the MR analyses demonstrated no causal relationship between T2DM and SDD. The lack of such an association was robust in the sensitivity analysis, and no pleiotropy was seen. CONCLUSIONS: Our results suggest that the association between T2DM and SDD may be method-dependent. Researchers and clinicians should be cautious in interpreting the association, especially the causal association, between T2DM and SDD. Our findings provide fresh insights into the association between T2DM and SDD by various analysis methods and guide future research and clinical efforts in the effective prevention and management of T2DM and SDD. LEVEL OF EVIDENCE: Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.


Subject(s)
Diabetes Mellitus, Type 2 , Mendelian Randomization Analysis , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Polymorphism, Single Nucleotide , Female , Male , Case-Control Studies , Middle Aged , Genetic Predisposition to Disease , Cross-Sectional Studies , Prospective Studies , Observational Studies as Topic , Aged , Genome-Wide Association Study
5.
Int Breastfeed J ; 19(1): 46, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956574

ABSTRACT

BACKGROUND: Limited research has explored the associations of gestational age (GA) and breastfeeding practices with growth and nutrition in term infants. METHODS: This multicenter cross-sectional study recruited 7299 singleton term infants from well-child visits in Shandong, China, between March 2021 and November 2022. Data on GA, gender, ethnicity, birth weight, parental heights, gestational diabetes and hypertension, age at visit, breastfeeding practices (point-in-time data at visit for infants < 6 months and retrospective data at 6 months for infants ≥ 6 months), complementary foods introduction, infant length and weight, were collected. 7270 infants were included in the analysis after excluding outliers with Z-scores of length (LAZ), weight or weight for length (WLZ) <-4 or > 4. Linear regression models adjused for covariates explored the impact of GA and breastfeeding practices on LAZ and WLZ, while logistic regression models evaluated their effect on the likelihood of moderate and severe stunting (MSS, LAZ<-2), moderate and severe acute malnutrition (MSAM, WLZ<-2) and overweight/obesity (WLZ > 2). Sensitivity analysis was conducted on normal birth weight infants (2.5-4.0 kg). RESULTS: Infants born early-term and exclusively breastfed accounted for 31.1% and 66.4% of the sample, respectively. Early-term birth related to higher WLZ (< 6 months: ß = 0.23, 95% confidence interval (CI): 0.16, 0.29; ≥6 months: ß = 0.12, 95% CI: 0.04, 0.20) and an increased risk of overweight/obesity throughout infancy (< 6 months: OR: 1.41, 95% CI 1.08, 1.84; ≥6 months: OR: 1.35, 95% CI 1.03, 1.79). Before 6 months, early-term birth correlated with lower LAZ (ß=-0.16, 95% CI: -0.21, -0.11) and an increased risk of MSS (OR: 1.01, 95%CI 1.00, 1.02); Compared to exclusive breastfeeding, exclusive formula-feeding and mixed feeding linked to lower WLZ (ß=-0.15, 95%CI -0.30, 0.00 and ß=-0.12, 95%CI -0.19, -0.05, respectively) and increased risks of MSAM (OR: 5.57, 95%CI 1.95, 15.88 and OR: 3.19, 95%CI 1.64, 6.19, respectively). Sensitivity analyses confirmed these findings. CONCLUSIONS: The findings emphasize the health risks of early-term birth and the protective effect of exclusive breastfeeding in singleton term infants, underscoring the avoidance of nonmedically indicated delivery before 39 weeks and promoting exclusive breastfeeding before 6 months.


Subject(s)
Breast Feeding , Humans , Breast Feeding/statistics & numerical data , Cross-Sectional Studies , Female , Male , Infant, Newborn , Infant , China/epidemiology , Gestational Age , Infant Nutritional Physiological Phenomena , Term Birth , Retrospective Studies , Adult , Nutritional Status
6.
J Exp Clin Cancer Res ; 43(1): 187, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965580

ABSTRACT

BACKGROUND: Recent studies have highlighted the significant role of the NF-κB signaling pathway in the initiation and progression of cancer. Furthermore, long noncoding RNAs (lncRNAs) have been identified as pivotal regulators in sustaining the NF-κB signaling pathway's functionality. Despite these findings, the underlying molecular mechanisms through which lncRNAs influence the NF-κB pathway remain largely unexplored. METHODS: Bioinformatic analyses were utilized to investigate the differential expression and prognostic significance of XTP6. The functional roles of XTP6 were further elucidated through both in vitro and in vivo experimental approaches. To estimate the interaction between XTP6 and NDH2, RNA pulldown and RNA Immunoprecipitation (RIP) assays were conducted. The connection between XTP6 and the IκBα promoter was examined using Chromatin Isolation by RNA Purification (ChIRP) assays. Additionally, Chromatin Immunoprecipitation (ChIP) assays were implemented to analyze the binding affinity of c-myc to the XTP6 promoter, providing insights into the regulatory mechanisms at play. RESULTS: XTP6 was remarkedly upregulated in glioblastoma multiforme (GBM) tissues and was connected with adverse prognosis in GBM patients. Our investigations revealed that XTP6 can facilitate the malignant progression of GBM both in vitro and in vivo. Additionally, XTP6 downregulated IκBα expression by recruiting NDH2 to the IκBα promoter, which resulted in elevated levels of H3K27me3, thereby reducing the transcriptional activity of IκBα. Moreover, the progression of GBM was further driven by the c-myc-mediated upregulation of XTP6, establishing a positive feedback loop with IκBα that perpetuated the activation of the NF-κB signaling pathway. Notably, the application of an inhibitor targeting the NF-κB signaling pathway effectively inhibited the continuous activation induced by XTP6, leading to a significant reduction in tumor formation in vivo. CONCLUSION: The results reveal that XTP6 unveils an innovative epigenetic mechanism instrumental in the sustained activation of the NF-κB signaling pathway, suggesting a promising therapeutic target for the treatment of GBM.


Subject(s)
Disease Progression , Glioblastoma , NF-kappa B , Proto-Oncogene Proteins c-myc , RNA, Long Noncoding , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , NF-kappa B/metabolism , Mice , Animals , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Signal Transduction , Prognosis , Feedback, Physiological , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Male , Cell Proliferation , Female
7.
Clin Rheumatol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38866992

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) play various roles in the development of many autoimmune diseases. However, their expression profiles and specific function in Sjögren's Syndrome remains largely unknown. OBJECTIVES: We aimed to investigate circRNAs potential diagnostic value in primary Sjögren's syndrome (pSS) and contribution to the pathogenesis of pSS. METHODS: This study included 102 subjects, 51 pSS patients and 51 healthy controls. The concentration of hsa_circ_0045800 was analyzed in peripheral blood mononuclear cells obtained from 51 pSS patients and 51 healthy controls by qRT-PCR. We established a receiver operating characteristic curve (ROC) to assess the biological diagnostic value of hsa_circ_0045800 for pSS. In addition, we analyzed the correlation between hsa_circ_0045800 and disease activity in Sjogren's syndrome. A differential analysis was also conducted on the concentration of hsa_circ_0045800 in patients in pSS patients before and after treatment. We studied the downstream mechanism of hsa_circ_0045800 through bioinformatics analysis and confirmed it using luciferase reporter gene assay. RESULTS: We confirmed that the concentration of hsa_circ_0045800 was elevated 10.4-fold in peripheral blood mononuclear cells of pSS patients than in healthy controls (p = 0.00). In the pSS active disease group, the concentration of hsa_circ_0045800 is 2.5-fold higher compared to the pSS non-active disease group (p = 0.04). The concentration of hsa_circ_0045800 after treatment was decreased by 80% compared with that before treatment (p = 0.037), suggesting its utility as a potential marker for monitoring treatment efficacy. ROC curve analysis showed that the diagnostic value of hsa_circ_0045800 in pSS patients was significantly higher than that in healthy controls, with an area under the curve of 0.865, a sensitivity of 74%, and a specificity of 92%. The concentration of hsa_circ_0045800 is correlated with various clinical factors: the concentration of hsa_circ_0045800 is positively associated with age (r = 0.328, P = 0.019), oral dryness (r = 0.331, P = 0.017), while it is negatively correlated with HGB (r = -0.435, P = 0.001) and and hypothyroidism (r = -0.318, P = 0.023). Bioinformatics predictions and luciferase assays indicated that hsa_circ_0045800 acts as a molecular sponge for miR-1247-5p, with SMAD2 being a target gene of miR-1247-5p. CONCLUSION: Our study results show that hsa_circ_0045800 potentially contributes to the development and progression of pSS via the miR-1247-5p/SMAD2 pathway. Peripheral blood mononuclear cells are directly involved in the pathogenesis of pSS, and the discovery of hsa_circ_0045800 in peripheral blood mononuclear cells highlights its potential as a novel biomarker for disease activity and diagnosis in patients with pSS. Key Points • The concentration of hsa_circ_0045800 was higher in peripheral blood mononuclear cells of pSS patients. • Hsa_circ_0045800 promoted pSS progression through miR-1247-5p-SMAD2 axis. • Hsa_circ_0045800 is a potential biomarker for pSS.

8.
Transl Lung Cancer Res ; 13(5): 1061-1068, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38854948

ABSTRACT

Background: Serum carbohydrate antigen 50 (CA50) is an auxiliary diagnostic marker for various solid tumors, but it remains unclear whether CA50 in pleural fluid can assist in the diagnosis of malignant pleural effusion (MPE). This study aimed to evaluate the diagnostic accuracy of pleural fluid CA50 for MPE in pleural effusion patients with undetermined causes. Methods: This study prospectively recruited pleural effusion patients with undetermined causes who visited the Affiliated Hospital of Inner Mongolia Medical University between September 2018 and July 2021. We measured pleural fluid CA50 level with an electrochemiluminescence assay. We analyzed the diagnostic accuracy of CA50 and carcinoembryonic antigen (CEA) for MPE with the receiver operating characteristic (ROC) curve. The net benefits of CA50 and CEA were analyzed using the decision curve analysis (DCA). Results: We enrolled 66 MPEs and 87 benign pleural effusions (BPEs). MPE patients had significantly higher CA50 and CEA than BPE patients. The area under the ROC curve (AUC) of CA50 was 0.72 (95% CI: 0.63-0.80). CA50 had a sensitivity of 0.30 (95% CI: 0.19-0.41) and a specificity of 1.00 (95% CI: 1.00-1.00) at the threshold of 15 IU/mL. The decision curve of CA50 was above the reference line at the calculated risk probability of between 0.30 and 1.00. Venn diagram indicated that some patients with low CEA (<50 or <150 ng/mL) and/or negative cytology can be identified by positive CA50 (>15 IU/mL). Conclusions: Pleural fluid CA50 has moderate accuracy and net benefit for detecting MPE. CA50 >15 IU/mL can be used to diagnose MPE. The combination of CA50 and CEA improves the diagnostic sensitivity for MPE.

9.
J Gynecol Oncol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38857909

ABSTRACT

OBJECTIVE: Pembrolizumab and dostarlimab are immune checkpoint inhibitors that target programmed death receptor 1 (PD-1). Combination anti-PD-1 regimens have been shown to exhibit favorable survival benefits when treating advanced endometrial cancer (EC). Which treatment was preferable will need to be confirmed by a cost-effectiveness comparison between them. METHODS: Based on patient and clinical parameters from RUBY and NRG-GY018 phase III randomized controlled trials, the Markov model with a 20-year time horizon was established to evaluate the cost-effectiveness of dostarlimab plus chemotherapy (DC), pembrolizumab plus chemotherapy (PC), and chemotherapy alone (C) treatment for patients with mismatch repair-proficient microsatellite-stable (pMMR-MSS) and mismatch repair-deficient microsatellite instability-high (dMMR-MSI-H) advanced EC from the American payers' perspective. The main results include total cost, life-years (LYs), quality-adjusted life-years (QALYs), and the incremental cost-effectiveness ratio (ICER) at a $150,000/QALY of willingness-to-pay. RESULTS: In the pMMR-MSS population, DC, PC, and C produced costs (QALYs) of $99,205 (3.02), $322,530 (3.25), and $421,923 (4.40), resulting in corresponding ICERs of $974,177/QALY (PC vs. C), $234,527/QALY (DC vs. C), $86,671/QALY (DC vs. PC), respectively; In the dMMR-MSI-H population, DC, PC, and C obtained costs (QALYs) of $120,177 (5.73), $691,399 (8.43), and $708,787 (11.26), yielding ICERs of $266,423/QALY (PC vs. C), $135,165/QALY (DC vs. C), $7,866/QALY (DC vs. PC), respectively. CONCLUSION: In the US, DC was a more cost-effective treatment than PC for patients with advanced EC irrespective of MMR status. However, compared to C, DC was associated with more cost-effectiveness in the dMMR-MSI-H population.

10.
Phys Chem Chem Phys ; 26(25): 17549-17560, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38884195

ABSTRACT

In this paper, we combine an energy decomposition analysis (EDA) scheme with many-body expansion (MBE) to develop a MB-EDA method to study the cooperative and anti-cooperative effects in molecular cluster systems. Based on the target state optimization self-consistent field (TSO-SCF) method, the intermolecular interaction energy can be decomposed into five chemically meaningful terms, i.e., electrostatic, exchange, polarization, charge transfer and dispersion interaction energies. MB-EDA can decompose each of these terms in MBE. This MB-EDA has been applied to 3 different cluster systems: water clusters, ionic liquid clusters, and acetonitrile-methane clusters. This reveals that electrostatic, exchange, and dispersion interactions are highly pairwise additive in all systems. In water and ionic liquid clusters, the many-body effects are significant in both polarization and charge transfer interactions, but are cooperative and anti-cooperative, respectively. For acetonitrile-methane clusters, which do not involve hydrogen bonds or charge-charge Coulombic interactions, the many-body effects are quite small. The chemical origins of different many-body effects are deeply analyzed. The MB-EDA method has been implemented in Qbics (https://qbics.info) and can be a useful tool for understanding the many-body behavior in molecular aggregates at the quantum chemical level of theory.

11.
ACS Med Chem Lett ; 15(6): 938-944, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38894920

ABSTRACT

Many malignant tumors, including breast cancer, exhibit amplification and overexpression of cyclin-dependent kinase 4 and 6 (CDK4/6). Ribociclib, approved and used in clinical treatment, acts as a highly selective CDK4/6 inhibitor for ER+/HER2- breast cancer. By modifying ribociclib with the chelator DOTA, we designed and synthesized a novel CDK4/6-positive PET imaging agent, which was radiolabeled by 68Ga for radioactive tagging. The radiotracer demonstrates high radiochemical purity, excellent stability in vitro and in vivo, and favorable pharmacokinetic characteristics. Cell uptake experiments using MCF-7 cells indicate that an excess of ribociclib (RBB) can inhibit cellular uptake of 68Ga-DOTA-RBB. Imaging and biodistribution experiments in MCF-7 tumor-bearing nude mice show significant radioactive accumulation in the tumor. However, preadministration of excess ribociclib results in a substantial reduction in radioactive accumulation within the tumor. On the basis of our explorations, 68Ga-DOTA-RBB, as a targeted imaging agent for CDK4/6-positive tumors, holds significant potential application values.

12.
J Agric Food Chem ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916549

ABSTRACT

Di-2-ethylhexyl phthalate (DEHP) is frequently used as a plasticizer to enhance the plasticity and durability of agricultural products, which pose adverse effects to human health and the environment. Aquaporin 1 (AQP1) is a main water transport channel protein and is involved in the maintenance of intestinal integrity. However, the impact of DEHP exposure on gut health and its potential mechanisms remain elusive. Here, we determined that DEHP exposure induced a compromised duodenum structure, which was concomitant with mitochondrial structural injury of epithelial cells. Importantly, DEHP exposure caused duodenum inflammatory epithelial cell damage and strong inflammatory response accompanied by activating the TLR4/MyD88/NF-κB signaling pathway. Mechanistically, DEHP exposure directly inhibits the expression of AQP1 and thus leads to an inflammatory response, ultimately disrupting duodenum integrity and barrier function. Collectively, our findings uncover the role of AQP1 in phthalate-induced intestinal disorders, and AQP1 could be a promising therapeutic approach for treating patients with intestinal disorders or inflammatory diseases.

13.
Exp Eye Res ; 245: 109965, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851477

ABSTRACT

Mitochondria-associated ER membranes (MAMs) are contact sites that enable bidirectional communication between the ER (endoplasmic reticulum) and mitochondria, including the transfer of Ca2+ signals. MAMs are essential for mitochondrial function and cellular energy metabolism. However, unrestrained Ca2+ transfer to the mitochondria can lead to mitochondria-dependent apoptosis. IP3R2 (Inositol 1,4,5-trisphosphate receptor 2) is an important intracellular Ca2+ channel. This study investigated the contribution of IP3R2-MAMs to hypoxia-induced apoptosis in photoreceptor cells. A photoreceptor hypoxia model was established by subretinal injection of hyaluronic acid (1%) in C57BL/6 mice and 1% O2 treatment in 661W cells. Transmission electron microscopy (TEM), ER-mitochondria colocalization, and the MAM reporter were utilized to evaluate MAM alterations. Cell apoptosis and mitochondrial homeostasis were evaluated using immunofluorescence (IF), flow cytometry, western blotting (WB), and ATP assays. SiRNA transfection was employed to silence IP3R2 in 661W cells. Upon hypoxia induction, MAMs were significantly increased in photoreceptors both in vivo and in vitro. This was accompanied by the activation of mitochondrial apoptosis and disruption of mitochondrial homeostasis. Elevated MAM-enriched IP3R2 protein levels induced by hypoxic injury led to mitochondrial calcium overload and subsequent photoreceptor apoptosis. Notably, IP3R2 knockdown not only improved mitochondrial morphology but also restored mitochondrial function in photoreceptors by limiting MAM formation and thereby attenuating mitochondrial calcium overload under hypoxia. Our results suggest that IP3R2-MAM-mediated mitochondrial calcium overload plays a critical role in mitochondrial dyshomeostasis, ultimately contributing to photoreceptor cell death. Targeting MAM constitutive proteins might provide an option for a therapeutic approach to mitigate photoreceptor death in retinal detachment.

14.
Endocrine ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861116

ABSTRACT

AIM: To analysis the change of electrogastrogram (EGG) in patients with type 2 diabetes mellitus (T2DM), and evaluate the prevalence of abnormal gastric electrical rhythm (AGER) and its relative influencing factors. METHODS: A total of 65 patients with T2DM hospitalized at the Second Affiliated Hospital of Soochow University from Dec. 2020 to Dec. 2021 were included in the cross-sectional study. General information, clinical data, and medical history data of all study subjects, including name, gender, body mass index (BMI), duration of diabetes, anti-diabetic therapies, high blood pressure (HBP) history, smoking history, and medication history, were completely collected. The results of laboratory tests, including biochemical parameters, glycosylated hemoglobin (HbA1c), fasting C-peptide, 2 h postprandial C-peptide, 24 h urine total protein (24 hUTP), urine microalbumin creatinine ratio (UACR) and estimated glomerular filtration rate (eGFR) were recorded. EGG, Gastroparesis Cardinal Symptom Index (GCSI), gastric emptying ultrasound, fundus examination, carotid artery ultrasonography, cardiac autonomic function test, heart rate variability (HRV) were all examined and recorded as well. According to the results of EGG, the subjects were divided into normal gastric electrical rhythm (NGER) group and abnormal gastric electrical rhythm (AGER) group. RESULTS: (1) Fasting blood glucose (FBG), HbA1c, the presence of diabetic peripheral neuropathy (DPN) and diabetic cardiac autonomic neuropathy (DCAN) were significantly higher in the AGER group (p < 0.05). Low frequency (LF) and high frequency (HF), the indicators of HRV, were significantly lower in the AGER group (p < 0.05). In addition, the prevalence of feeling excessively full after meals, loss of appetite, and stomach or belly visibly larger after meals of gastrointestinal symptoms of gastroparesis were significantly higher in the AGER group (p < 0.05). Multiple logistic regression analysis showed that FBG and the prevalence of DCAN were the independent risk factors. CONCLUSION: AGER was associated with high FBG and the presence of DCAN. EGG examination is recommended for patients with gastrointestinal symptoms and clues of DCAN.

15.
Front Pharmacol ; 15: 1364871, 2024.
Article in English | MEDLINE | ID: mdl-38831888

ABSTRACT

Hepatocellular carcinoma (HCC) is a common and highly malignant tumor with poor outcomes, especially when it metastasizes. In this report, we present the case of a 64-year-old male patient diagnosed with recurrence and multiple metastases of HCC 7 years after surgery. As the tumor invaded the spinal canal and pressed on the spinal cord, the patient experienced paralysis in the lower limbs. After undergoing surgical resection for spinal decompression, the patient chose an innovative regimen: QL1604 200 mg every 3 weeks plus bevacizumab 675 mg every 3 weeks as first-line treatment. From July 2022 to February 2024, the patient has regularly received the treatment. During the treatment, the paralysis symptoms of the patient gradually improved, and the motor function of the lower limbs completely returned to normal. When re-evaluated his spinal cord injury, the Frankel grade of the patient was downgraded from C to E. The tumor shrank to reach a state of PR and lasted for one and a half years. QL1604 combined with bevacizumab demonstrated excellent efficacy and minimal side effects in this patient. This new combined therapy holds potential as a first-line treatment strategy.

16.
Free Radic Biol Med ; 222: 361-370, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945456

ABSTRACT

BACKGROUND: To date, Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver disease associated with clinical complications. Dietary fatty acids have been suggested to be involved in preventing or reversing the accumulation of hepatic fat. However, contradicting roles of monounsaturated fatty acids to the liver have been implicated in various human and murine models, mainly due to the insolubility nature of fatty acids. METHODS: High pressure homogenization methods were used to fabricate oleic acid embedded lipid nanoparticles (OALNs). The in vitro and in vivo models were used to validate the physiological effect of this OALNs via various cellular and molecular approaches including cell viability essay, fluorescent staining, electron microscope, RNAseq, qPCR, Western blots, and IHC staining. RESULTS: We successfully fabricated OALNs with enhanced stability and solubility. More importantly, lipid accumulation was successfully induced in hepatocytes via the application of OALNs in a dose-dependent manner. Overload of OALNs resulted in ROS accumulation and apoptosis of hepatocytes dose-dependently. With the help of transcriptome sequencing and traditional experimental approaches, we demonstrated that the lipotoxic effect induced by OALNs was exerted via the DDIT3/BCL2/BAX/Caspases signaling. Moreover, we also verified that OALNs induced steatosis and subsequent apoptosis in the liver of mice via the activation of DDIT3 in vivo. CONCLUSIONS: In all, our results established a potential pathogenic model of NAFLD for further studies and indicated the possible involvement of DDIT3 signaling in abnormal steatosis process of the liver.

17.
Nat Commun ; 15(1): 5441, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937512

ABSTRACT

Recent studies have shown the crucial role of podocyte injury in the development of diabetic kidney disease (DKD). Deubiquitinating modification of proteins is widely involved in the occurrence and development of diseases. Here, we explore the role and regulating mechanism of a deubiquitinating enzyme, OTUD5, in podocyte injury and DKD. RNA-seq analysis indicates a significantly decreased expression of OTUD5 in HG/PA-stimulated podocytes. Podocyte-specific Otud5 knockout exacerbates podocyte injury and DKD in both type 1 and type 2 diabetic mice. Furthermore, AVV9-mediated OTUD5 overexpression in podocytes shows a therapeutic effect against DKD. Mass spectrometry and co-immunoprecipitation experiments reveal an inflammation-regulating protein, TAK1, as the substrate of OTUD5 in podocytes. Mechanistically, OTUD5 deubiquitinates K63-linked TAK1 at the K158 site through its active site C224, which subsequently prevents the phosphorylation of TAK1 and reduces downstream inflammatory responses in podocytes. Our findings show an OTUD5-TAK1 axis in podocyte inflammation and injury and highlight the potential of OTUD5 as a promising therapeutic target for DKD.


Subject(s)
Diabetic Nephropathies , Inflammation , MAP Kinase Kinase Kinases , Mice, Knockout , Podocytes , Ubiquitination , Podocytes/metabolism , Podocytes/pathology , Animals , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/genetics , Mice , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Humans , Male , Mice, Inbred C57BL , Phosphorylation , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/complications , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/genetics , HEK293 Cells , Deubiquitinating Enzymes/metabolism , Deubiquitinating Enzymes/genetics
18.
J Agric Food Chem ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943677

ABSTRACT

Fusarium head blight caused by Fusarium graminearum is a devastating disease in wheat that seriously endangers food security and human health. Previous studies have found that the secondary metabolite phenazine-1-carboxamide produced by biocontrol bacteria inhibited F. graminearum by binding to and inhibiting the activity of histone acetyltransferase Gcn5 (FgGcn5). However, the detailed mechanism of this inhibition remains unknown. Our structural and biochemical studies revealed that phenazine-1-carboxamide (PCN) binds to the histone acetyltransferase (HAT) domain of FgGcn5 at its cosubstrate acetyl-CoA binding site, thus competitively inhibiting the histone acetylation function of the enzyme. Alanine substitution of the residues in the binding site shared by PCN and acetyl-CoA not only decreased the histone acetylation level of the enzyme but also dramatically impacted the development, mycotoxin synthesis, and virulence of the strain. Taken together, our study elucidated a competitive inhibition mechanism of Fusarium fungus by PCN and provided a structural template for designing more potent phenazine-based fungicides.

19.
Transl Cancer Res ; 13(5): 2518-2534, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38881923

ABSTRACT

Background: Elevated expression of SLC7A11, in conjunction with glucose deprivation, has revealed disulfidptosis as an emerging cell death modality. However, the prevalence of disulfidptosis across tumor cell lines, irrespective of SLC7A11 levels, remains uncertain. Additionally, deletion of the ribophorin I (RPN1) gene imparts resistance to disulfidptosis, yet the precise mechanism linking RPN1 to disulfidptosis remains elusive. The aim of this study is to determine the mechanism of RPN1-induced disulfidptosis and to determine the possibility of RPN1 as a pan-cancer marker. Methods: We hypothesized the widespread occurrence of disulfidptosis in various tumor cells, and proposed that RPN1-mediated disulfidptosis may be executed through cell skeleton breakdown. Experimental validation was conducted via flow cytometry, immunofluorescence, and western blot techniques. Furthermore, given RPN1's status as an emerging cell death marker, we utilized bioinformatics to analyze its expression in tumor tissues, clinical relevance, mechanisms within the tumor microenvironment, and potential for immunotherapy. Results: Conducting experiments on breast cancer (MDA-MB-231) and lung cancer (A549) cell lines under glucose-starved conditions, we found that RPN1 primarily induces cell skeleton breakdown to facilitate disulfidptosis. RPN1 demonstrated robust messenger RNA (mRNA) expression across 16 solid tumors, validated by data from 12 tumor types in the Gene Expression Omnibus (GEO). Across 12 cancer types, RPN1 exhibited significant diagnostic potential, particularly excelling in accuracy for glioblastoma (GBM). Elevated RPN1 expression in tumor tissues was found to correlate with improved overall survival (OS) in certain cancers [diffuse large B-cell lymphoma (DLBC) and thymoma (THYM)] but poorer prognosis in others [adrenocortical carcinoma (ACC), kidney chromophobe (KICH), brain lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), and pancreatic adenocarcinoma (PAAD)]. RPN1 is enriched in immune-related pathways and correlates with immune scores in tumor tissues. In urothelial carcinoma (UCC), RPN1 demonstrates potential in predicting the efficacy of anti-programmed cell death ligand 1 (PD-L1) immune therapy. Conclusions: This study underscores RPN1's role in facilitating disulfidptosis, its broad relevance as a pan-cancer biomarker, and its association with the efficacy of anti-PD-L1 immune therapy.

20.
Nat Commun ; 15(1): 4742, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834571

ABSTRACT

The further practical applications of Li-rich layered oxides are impeded by voltage decay and redox asymmetry, which are closely related to the structural degradation involving irreversible transition metal migration. It has been demonstrated that the superstructure ordering in O2-type materials can effectively suppress voltage decay and redox asymmetry. Herein, we elucidate that the absence of this superstructure ordering arrangement in a Ru-based O2-type oxide can still facilitate the highly reversible transition metal migration. We certify that Ru in superstructure-free O2-type structure can unlock a quite different migration path from Mn in mostly studied cases. The highly reversible migration of Ru helps the cathode maintain the structural robustness, thus realizing terrific capacity retention with neglectable voltage decay and inhibited oxygen redox asymmetry. We untie the knot that the absence of superstructure ordering fails to enable a high-performance Li-rich layered oxide cathode material with suppressed voltage decay and redox asymmetry.

SELECTION OF CITATIONS
SEARCH DETAIL
...