Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 139(22): 7624-7631, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28492077

ABSTRACT

This paper describes charge transport by tunneling across self-assembled monolayers (SAMs) of thiol-terminated derivatives of oligo(ethylene glycol) (HS(CH2CH2O)nCH3; HS(EG)nCH3); these SAMs are positioned between gold bottom electrodes and Ga2O3/EGaIn top electrodes. Comparison of the attenuation factor (ß of the simplified Simmons equation) across these SAMs with the corresponding value obtained with length-matched SAMs of oligophenyls (HS(Ph)nH) and n-alkanethiols (HS(CH2)nH) demonstrates that SAMs of oligo(ethylene glycol) have values of ß (ß(EG)n = 0.29 ± 0.02 natom-1 and ß = 0.24 ± 0.01 Å-1) indistinguishable from values for SAMs of oligophenyls (ß(Ph)n = 0.28 ± 0.03 Å-1), and significantly lower than those of SAMs of n-alkanethiolates (ß(CH2)n = 0.94 ± 0.02 natom-1 and 0.77 ± 0.03 Å-1). There are two possible origins for this low value of ß. The more probable involves hole tunneling by superexchange, which rationalizes the weak dependence of the rate of charge transport on the length of the molecules of HS(EG)nCH3 using interactions among the high-energy, occupied orbitals associated with the lone-pair electrons on oxygen. Based on this mechanism, SAMs of oligo(ethylene glycol)s are good conductors (by hole tunneling) but good insulators (by electron and/or hole drift conduction). This observation suggests SAMs derived from these or electronically similar molecules are a new class of electronic materials. A second but less probable mechanism for this unexpectedly low value of ß for SAMs of S(EG)nCH3 rests on the possibility of disorder in the SAM and a systematic discrepancy between different estimates of the thickness of these SAMs.

2.
Angew Chem Int Ed Engl ; 54(49): 14743-7, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26450132

ABSTRACT

This work examines charge transport (CT) through self-assembled monolayers (SAMs) of oligoglycines having an N-terminal cysteine group that anchors the molecule to a gold substrate, and demonstrate that CT is rapid (relative to SAMs of n-alkanethiolates). Comparisons of rates of charge transport-using junctions with the structure Au(TS)/SAM//Ga2O3/EGaIn (across these SAMs of oligoglycines, and across SAMs of a number of structurally and electronically related molecules) established that rates of charge tunneling along SAMs of oligoglycines are comparable to that along SAMs of oligophenyl groups (of comparable length). The mechanism of tunneling in oligoglycines is compatible with superexchange, and involves interactions among high-energy occupied orbitals in multiple, consecutive amide bonds, which may by separated by one to three methylene groups. This mechanistic conclusion is supported by density functional theory (DFT).

3.
ACS Nano ; 9(2): 1471-7, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25578805

ABSTRACT

This paper investigates the influence of the interface between a gold or silver metal electrode and an n-alkyl SAM (supported on that electrode) on the rate of charge transport across junctions with structure Met(Au or Ag)(TS)/A(CH2)nH//Ga2O3/EGaIn by comparing measurements of current density, J(V), for Met/AR = Au/thiolate (Au/SR), Ag/thiolate (Ag/SR), Ag/carboxylate (Ag/O2CR), and Au/acetylene (Au/C≡CR), where R is an n-alkyl group. Values of J0 and ß (from the Simmons equation) were indistinguishable for these four interfaces. Since the anchoring groups, A, have large differences in their physical and electronic properties, the observation that they are indistinguishable in their influence on the injection current, J0 (V = 0.5) indicates that these four Met/A interfaces do not contribute to the shape of the tunneling barrier in a way that influences J(V).

4.
J Am Chem Soc ; 136(34): 11918-21, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-25101784

ABSTRACT

Self-assembled monolayers (SAMs), prepared by reaction of terminal n-alkynes (HC≡C(CH2)nCH3, n = 5, 7, 9, and 11) with Au(111) at 60 °C were characterized using scanning tunneling microscopy (STM), infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS), and contact angles of water. In contrast to previous spectroscopic studies of this type of SAMs, these combined microscopic and spectroscopic experiments confirm formation of highly ordered SAMs having packing densities and molecular chain orientations very similar to those of alkanethiolates on Au(111). Physical properties, hydrophobicity, high surface order, and packing density, also suggest that SAMs of alkynes are similar to SAMs of alkanethiols. The formation of high-quality SAMs from alkynes requires careful preparation and manipulation of reactants in an oxygen-free environment; trace quantities of O2 lead to oxidized contaminants and disordered surface films. The oxidation process occurs during formation of the SAM by oxidation of the -C≡C- group (most likely catalyzed by the gold substrate in the presence of O2).

SELECTION OF CITATIONS
SEARCH DETAIL
...