Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 926592, 2022.
Article in English | MEDLINE | ID: mdl-35755999

ABSTRACT

Cover cropping (CC) is a promising in-field practice to mitigate soil health degradation and nitrogen (N) losses from excessive N fertilization. Soil N-cycling microbial communities are the fundamental drivers of these processes, but how they respond to CC under field conditions is poorly documented for typical agricultural systems. Our objective was to investigate this relationship for a long-term (36 years) corn [Zea mays L.] monocultures under three N fertilizer rates (N0, N202, and N269; kg N/ha), where a mixture of cereal rye [Secale cereale L.] and hairy vetch [Vicia villosa Roth.] was introduced for two consecutive years, using winter fallows as controls (BF). A 3 × 2 split-plot arrangement of N rates and CC treatments in a randomized complete block design with three replications was deployed. Soil chemical and physical properties and potential nitrification (PNR) and denitrification (PDR) rates were measured along with functional genes, including nifH, archaeal and bacterial amoA, nirK, nirS, and nosZ-I, sequenced in Illumina MiSeq system and quantified in high-throughput quantitative polymerase chain reaction (qPCR). The abundances of nifH, archaeal amoA, and nirS decreased with N fertilization (by 7.9, 4.8, and 38.9 times, respectively), and correlated positively with soil pH. Bacterial amoA increased by 2.4 times with CC within N269 and correlated positively with soil nitrate. CC increased the abundance of nirK by 1.5 times when fertilized. For both bacterial amoA and nirK, N202 and N269 did not differ from N0 within BF. Treatments had no significant effects on nosZ-I. The reported changes did not translate into differences in functionality as PNR and PDR did not respond to treatments. These results suggested that N fertilization disrupts the soil N-cycling communities of this system primarily through soil acidification and high nutrient availability. Two years of CC may not be enough to change the N-cycling communities that adapted to decades of disruption from N fertilization in corn monoculture. This is valuable primary information to understand the potentials and limitations of CC when introduced into long-term agricultural systems.

2.
Microorganisms ; 9(6)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201118

ABSTRACT

Recent advancements in agricultural metagenomics allow for characterizing microbial indicators of soil health brought on by changes in management decisions, which ultimately affect the soil environment. Field-scale studies investigating the microbial taxa from agricultural experiments are sparse, with none investigating the long-term effect of crop rotation and tillage on microbial indicator species. Therefore, our goal was to determine the effect of rotations (continuous corn, CCC; continuous soybean, SSS; and each phase of a corn-soybean rotation, Cs and Sc) and tillage (no-till, NT; and chisel tillage, T) on the soil microbial community composition following 20 years of management. We found that crop rotation and tillage influence the soil environment by altering key soil properties, such as pH and soil organic matter (SOM). Monoculture corn lowered pH compared to SSS (5.9 vs. 6.9, respectively) but increased SOM (5.4% vs. 4.6%, respectively). Bacterial indicator microbes were categorized into two groups: SOM dependent and acidophile vs. N adverse and neutrophile. Fungi preferred the CCC rotation, characterized by low pH. Archaeal indicators were mainly ammonia oxidizers with species occupying niches at contrasting pHs. Numerous indicator microbes are involved with N cycling due to the fertilizer-rich environment, prone to aquatic or gaseous losses.

3.
Microorganisms ; 8(11)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187276

ABSTRACT

Metagenomics in agricultural research allows for searching for bioindicators of soil health to characterize changes caused by management practices. Cover cropping (CC) improves soil health by mitigating nutrient losses, yet the benefits depend on the tillage system used. Field studies searching for indicator taxa within these systems are scarce and narrow in their scope. Our goal was to identify bioindicators of soil health from microbes that were responsive to CC (three levels) and tillage (chisel tillage, no-till) treatments after five years under field conditions. We used rRNA gene-based analysis via Illumina HiSeq2500 technology with QIIME 2.0 processing to characterize the microbial communities. Our results indicated that CC and tillage differentially changed the relative abundances (RAs) of the copiotrophic and oligotrophic guilds. Corn-soybean rotations with legume-grass CC increased the RA of copiotrophic decomposers more than rotations with grass CC, whereas rotations with only bare fallows favored stress-tolerant oligotrophs, including nitrifiers and denitrifiers. Unlike bacteria, fewer indicator fungi and archaea were detected; fungi were poorly identified, and their responses were inconsistent, while the archaea RA increased under bare fallow treatments. This is primary information that allows for understanding the potential for managing the soil community compositions using cover crops to reduce nutrient losses to the environment.

4.
Pest Manag Sci ; 72(4): 684-91, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25960311

ABSTRACT

BACKGROUND: A plot-scale experiment was conducted to assess the impact of field application rates of glyphosate on soil microbial communities by taking measurements of microbial activity (in terms of substrate-induced respiration and enzyme activity) in parallel with culture-independent approaches to assessing both bacterial abundance and diversity. Two rates of glyphosate, alone or in a mixture with 2,4-dichlorophenoxyacetic acid, were applied directly onto the soil surface, simulating normal use in chemical fallow in no-till systems. RESULTS: No consistent rate-dependent responses were observed in the microbial activity parameters investigated in the field plots that were exposed to glyphosate. Denaturant gradient gel electrophoresis (DGGE) of the overall bacterial community (Eubacteria) and ammonia-oxidising bacteria (AOB) revealed no effects of the high rate of glyphosate on the structure of the communities in comparison with the control. No treatment effects were observed on the abundance of Eubacteria shortly after treatment in 2010, while a small but significant difference between the high rate and the control was detected in the first sampling in 2011. The abundance of AOB was relatively low during the study, and treatment effects were undetectable. CONCLUSIONS: The absence of negative effects on soil microbial communities in this study suggests that glyphosate use at recommended rates poses low risk to the microbiota.


Subject(s)
Ammonia/metabolism , Bacteria/drug effects , Bacteria/metabolism , Glycine/analogs & derivatives , Soil Microbiology , Soil Pollutants/toxicity , 2,4-Dichlorophenoxyacetic Acid/toxicity , Bacteria/enzymology , Drug Interactions , Glycine/toxicity , Oxidation-Reduction , Oxidoreductases/metabolism , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...