Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 56(24): 3349-3363.e6, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34932950

ABSTRACT

Myoblast fusion is essential for muscle development and regeneration. Yet, it remains poorly understood how mononucleated myoblasts fuse with preexisting fibers. We demonstrate that ERK1/2 inhibition (ERKi) induces robust differentiation and fusion of primary mouse myoblasts through a linear pathway involving RXR, ryanodine receptors, and calcium-dependent activation of CaMKII in nascent myotubes. CaMKII activation results in myotube growth via fusion with mononucleated myoblasts at a fusogenic synapse. Mechanistically, CaMKII interacts with and regulates MYMK and Rac1, and CaMKIIδ/γ knockout mice exhibit smaller regenerated myofibers following injury. In addition, the expression of a dominant negative CaMKII inhibits the formation of large multinucleated myotubes. Finally, we demonstrate the evolutionary conservation of the pathway in chicken myoblasts. We conclude that ERK1/2 represses a signaling cascade leading to CaMKII-mediated fusion of myoblasts to myotubes, providing an attractive target for the cultivated meat industry and regenerative medicine.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Muscle Fibers, Skeletal/cytology , Myoblasts/cytology , Actins/metabolism , Animals , Calcium/metabolism , Cell Differentiation/drug effects , Cell Fusion , Cell Proliferation/drug effects , Enzyme Activation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Mice, Inbred C57BL , Models, Biological , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Proteins/metabolism , Myoblasts/drug effects , Myoblasts/metabolism , Protein Binding , Protein Kinase Inhibitors/pharmacology , Receptors, Retinoic Acid/metabolism , Signal Transduction , rac1 GTP-Binding Protein/metabolism
2.
F1000Res ; 92020.
Article in English | MEDLINE | ID: mdl-32566134

ABSTRACT

Background: Upon wound formation, platelets adhere to the neighboring extracellular matrix and spread on it, a process which is critical for physiological wound healing. Multiple external factors, such as the molecular composition of the environment and its mechanical properties, play a key role in this process and direct its speed and outcome. Methods: We combined live cell imaging, quantitative interference reflection microscopy and cryo-electron tomography to characterize, at a single platelet level, the differential spatiotemporal dynamics of the adhesion process to fibrinogen- and collagen IV-functionalized surfaces. Results: Initially, platelets sense both substrates by transient rapid extensions of filopodia. On collagen IV, a short-term phase of filopodial extension is followed by lamellipodia-based spreading. This transition is preceded by the extension of a single or couple of microtubules into the platelet's periphery and their apparent insertion into the core of the filopodia. On fibrinogen surfaces, the filopodia-to-lamellipodia transition was partial and microtubule extension was not observed leading to limited spreading, which could be restored by manganese or thrombin. Conclusions: Based on these results, we propose that interaction with collagen IV stimulate platelets to extend microtubules to peripheral filopodia, which in turn, enhances filopodial-to-lamellipodial transition and overall lamellipodia-based spreading. Fibrinogen, on the other hand, fails to induce these early microtubule extensions, leading to full lamellipodia spreading in only a fraction of the seeded platelets. We further suggest that activation of integrin αIIbß3 is essential for filopodial-to-lamellipodial transition, based on the capacity of integrin activators to enhance lamellipodia spreading on fibrinogen.


Subject(s)
Blood Platelets/cytology , Collagen Type IV/chemistry , Fibrinogen/chemistry , Platelet Adhesiveness , Cells, Cultured , Humans , Microtubules , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Pseudopodia
SELECTION OF CITATIONS
SEARCH DETAIL
...