Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37831560

ABSTRACT

Deep learning-based Hand Gesture Recognition (HGR) via surface Electromyogram (sEMG) signals have recently shown considerable potential for development of advanced myoelectric-controlled prosthesis. Although deep learning techniques can improve HGR accuracy compared to their classical counterparts, classifying hand movements based on sparse multichannel sEMG signals is still a challenging task. Furthermore, existing deep learning approaches, typically, include only one model as such can hardly extract representative features. In this paper, we aim to address this challenge by capitalizing on the recent advances in hybrid models and transformers. In other words, we propose a hybrid framework based on the transformer architecture, which is a relatively new and revolutionizing deep learning model. The proposed hybrid architecture, referred to as the Transformer for Hand Gesture Recognition (TraHGR), consists of two parallel paths followed by a linear layer that acts as a fusion center to integrate the advantage of each module. We evaluated the proposed architecture TraHGR based on the commonly used second Ninapro dataset, referred to as the DB2. The sEMG signals in the DB2 dataset are measured in real-life conditions from 40 healthy users, each performing 49 gestures. We have conducted an extensive set of experiments to test and validate the proposed TraHGR architecture, and compare its achievable accuracy with several recently proposed HGR classification algorithms over the same dataset. We have also compared the results of the proposed TraHGR architecture with each individual path and demonstrated the distinguishing power of the proposed hybrid architecture. The recognition accuracies of the proposed TraHGR architecture for the window of size 200ms and step size of 100ms are 86.00%, 88.72%, 81.27%, and 93.74%, which are 2.30%, 4.93%, 8.65%, and 4.20% higher than the state-of-the-art performance for DB2 (49 gestures), DB2-B (17 gestures), DB2-C (23 gestures), and DB2-D (9 gestures), respectively.


Subject(s)
Gestures , Pattern Recognition, Automated , Humans , Electromyography/methods , Pattern Recognition, Automated/methods , Algorithms , Recognition, Psychology
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 5115-5119, 2022 07.
Article in English | MEDLINE | ID: mdl-36086242

ABSTRACT

Recently, there has been a surge of significant interest on application of Deep Learning (DL) models to autonomously perform hand gesture recognition using surface Electromyogram (sEMG) signals. Many of the existing DL models are, however, designed to be applied on sparse sEMG signals. Furthermore, due to the complex structure of these models, typically, we are faced with memory constraint issues, require large training times and a large number of training samples, and; there is the need to resort to data augmentation and/or transfer learning. In this paper, for the first time (to the best of our knowledge), we investigate and design a Vision Transformer (ViT) based architecture to perform hand gesture recognition from High Density (HD-sEMG) signals. Intuitively speaking, we capitalize on the recent breakthrough role of the transformer architecture in tackling different com-plex problems together with its potential for employing more input parallelization via its attention mechanism. The proposed Vision Transformer-based Hand Gesture Recognition (ViT-HGR) framework can overcome the aforementioned training time problems and can accurately classify a large number of hand gestures from scratch without any need for data augmentation and/or transfer learning. The efficiency of the proposed ViT-HGR framework is evaluated using a recently-released HD-sEMG dataset consisting of 65 isometric hand gestures. Our experiments with 64-sample (31.25 ms) window size yield average test accuracy of 84.62 ± 3.07%, where only 78,210 learnable parameters are utilized in the model. The compact structure of the proposed ViT-based ViT-HGR framework (i.e., having significantly reduced number of trainable parameters) shows great potentials for its practical application for prosthetic control.


Subject(s)
Gestures , Pattern Recognition, Automated , Electric Power Supplies , Electromyography , Signal Processing, Computer-Assisted
3.
Article in English | MEDLINE | ID: mdl-33945480

ABSTRACT

This work is motivated by the recent advances in Deep Neural Networks (DNNs) and their widespread applications in human-machine interfaces. DNNs have been recently used for detecting the intended hand gesture through the processing of surface electromyogram (sEMG) signals. Objective: Although DNNs have shown superior accuracy compared to conventional methods when large amounts of data are available for training, their performance substantially decreases when data are limited. Collecting large datasets for training may be feasible in research laboratories, but it is not a practical approach for real-life applications. The main objective of this work is to design a modern DNN-based gesture detection model that relies on minimal training data while providing high accuracy. Methods: We propose the novel Few-Shot learning- Hand Gesture Recognition (FS-HGR) architecture. Few-shot learning is a variant of domain adaptation with the goal of inferring the required output based on just one or a few training observations. The proposed FS-HGR generalizes after seeing very few observations from each class by combining temporal convolutions with attention mechanisms. This allows the meta-learner to aggregate contextual information from experience and to pinpoint specific pieces of information within its available set of inputs. Data Source & Summary of Results: The performance of FS-HGR was tested on the second and fifth Ninapro databases, referred to as the DB2 and DB5, respectively. The DB2 consists of 50 gestures (rest included) from 40 healthy subjects. The Ninapro DB5 contains data from 10 healthy participants performing a total of 53 different gestures (rest included). The proposed approach for the Ninapro DB2 led to 85.94% classification accuracy on new repetitions with few-shot observation (5-way 5-shot), 81.29% accuracy on new subjects with few-shot observation (5-way 5-shot), and 73.36% accuracy on new gestures with few-shot observation (5-way 5-shot). Moreover, the proposed approach for the Ninapro DB5 led to 64.65% classification accuracy on new subjects with few-shot observation (5-way 5-shot).


Subject(s)
Algorithms , Gestures , Electromyography , Hand , Humans , Neural Networks, Computer , Recognition, Psychology
4.
IEEE Trans Biomed Circuits Syst ; 12(1): 47-57, 2018 02.
Article in English | MEDLINE | ID: mdl-29028209

ABSTRACT

It is believed that brain-like computing system can be achieved by the fusion of electronics and neuroscience. In this way, the optimized digital hardware implementation of neurons, primary units of nervous system, play a vital role in neuromorphic applications. Moreover, one of the main features of pyramidal neurons in cortical areas is bursting activities that has a critical role in synaptic plasticity. The Pinsky-Rinzel model is a nonlinear two-compartmental model for CA3 pyramidal cell that is widely used in neuroscience. In this paper, a modified Pinsky-Rinzel pyramidal model is proposed by replacing its complex nonlinear equations with piecewise linear approximation. Next, a digital circuit is designed for the simplified model to be able to implement on a low-cost digital hardware, such as field-programmable gate array (FPGA). Both original and proposed models are simulated in MATLAB and next digital circuit simulated in Vivado is compared to show that obtained results are in good agreement. Finally, the results of physical implementation on FPGA are also illustrated. The presented circuit advances preceding designs with regards to the ability to replicate essential characteristics of different firing responses including bursting and spiking in the compartmental model. This new circuit has various applications in neuromorphic engineering, such as developing new neuroinspired chips.


Subject(s)
CA3 Region, Hippocampal/physiology , Models, Neurological , Pyramidal Cells/physiology , Animals , CA3 Region, Hippocampal/cytology , Humans , Pyramidal Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...