Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Psychoneuroendocrinology ; 166: 107070, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38733757

ABSTRACT

Estrogen is a group of hormones that collaborate with the nervous system to impact the overall well-being of all genders. It influences many processes, including those occurring in the central nervous system, affecting learning and memory, and playing roles in neurodegenerative diseases and mental disorders. The hormone's action is mediated by specific receptors. Significant roles of classical estrogen receptors, ERα and ERß, in various diseases were known since many years, but after identifying a structurally and locationally distinct receptor, the G protein-coupled estrogen receptor (GPER), its role in human physiology and pathophysiology was investigated. This review compiles GPER-related information, highlighting its impact on homeostasis and diseases, while putting special attention on functions and dysfunctions of this receptor in neurobiology and biobehavioral processes. Understanding the receptor modulation possibilities is essential for therapy, as disruptions in receptors can lead to diseases or disorders, irrespective of correct estrogen levels. We conclude that studies on the GPER receptor have the potential to develop therapies that regulate estrogen and positively impact human health.

2.
Curr Issues Mol Biol ; 46(3): 2678-2700, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38534785

ABSTRACT

Mucopolysaccharidoses (MPS) are a group of diseases caused by mutations in genes encoding lysosomal enzymes that catalyze reactions of glycosaminoglycan (GAG) degradation. As a result, GAGs accumulate in lysosomes, impairing the proper functioning of entire cells and tissues. There are 14 types/subtypes of MPS, which are differentiated by the kind(s) of accumulated GAG(s) and the type of a non-functional lysosomal enzyme. Some of these types (severe forms of MPS types I and II, MPS III, and MPS VII) are characterized by extensive central nervous system disorders. The aim of this work was to identify, using transcriptomic methods, organelle-related genes whose expression levels are changed in neuronopathic types of MPS compared to healthy cells while remaining unchanged in non-neuronopathic types of MPS. The study was conducted with fibroblast lines derived from patients with neuronopathic and non-neuronopathic types of MPS and control (healthy) fibroblasts. Transcriptomic analysis has identified genes related to cellular organelles whose expression is altered. Then, using fluorescence and electron microscopy, we assessed the morphology of selected structures. Our analyses indicated that the genes whose expression is affected in neuronopathic MPS are often associated with the structures or functions of the cell nucleus, endoplasmic reticulum, or Golgi apparatus. Electron microscopic studies confirmed disruptions in the structures of these organelles. Special attention was paid to up-regulated genes, such as PDIA3 and MFGE8, and down-regulated genes, such as ARL6IP6, ABHD5, PDE4DIP, YIPF5, and CLDN11. Of particular interest is also the GM130 (GOLGA2) gene, which encodes golgin A2, which revealed an increased expression in neuronopathic MPS types. We propose to consider the levels of mRNAs of these genes as candidates for biomarkers of neurodegeneration in MPS. These genes may also become potential targets for therapies under development for neurological disorders associated with MPS and candidates for markers of the effectiveness of these therapies. Although fibroblasts rather than nerve cells were used in this study, it is worth noting that potential genetic markers characteristic solely of neurons would be impractical in testing patients, contrary to somatic cells that can be relatively easily obtained from assessed persons.

3.
Pharmaceutics ; 15(2)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36840025

ABSTRACT

Mucopolysaccharidoses (MPS) are rare genetic disorders belonging to the lysosomal storage diseases. They are caused by mutations in genes encoding lysosomal enzymes responsible for degrading glycosaminoglycans (GAGs). As a result, GAGs accumulate in lysosomes, leading to impairment of cells, organs and, consequently, the entire body. Many of the therapies proposed thus far require the participation of chaperone proteins, regardless of whether they are therapies in common use (enzyme replacement therapy) or remain in the experimental phase (gene therapy, STOP-codon-readthrough therapy). Chaperones, which include heat shock proteins, are responsible for the correct folding of other proteins to the most energetically favorable conformation. Without their appropriate levels and activities, the correct folding of the lysosomal enzyme, whether supplied from outside or synthesized in the cell, would be impossible. However, the baseline level of nonspecific chaperone proteins in MPS has never been studied. Therefore, the purpose of this work was to determine the basal levels of nonspecific chaperone proteins of the Hsp family in MPS cells and to study the effect of normalizing GAG concentrations on these levels. Results of experiments with fibroblasts taken from patients with MPS types I, II, IIIA, IIIB, IIIC, IID, IVA, IVB, VI, VII, and IX, as well as from the brains of MPS I mice (Idua-/-), indicated significantly reduced levels of the two chaperones, Hsp70 and Hsp40. Interestingly, the reduction in GAG levels in the aforementioned cells did not lead to normalization of the levels of these chaperones but caused only a slight increase in the levels of Hsp40. An additional transcriptomic analysis of MPS cells indicated that the expression of other genes involved in protein folding processes and the cell response to endoplasmic reticulum stress, resulting from the appearance of abnormally folded proteins, was also modulated. To summarize, reduced levels of chaperones may be an additional cause of the low activity or inactivity of lysosomal enzymes in MPS. Moreover, this may point to causes of treatment failure where the correct structure of the enzyme supplied or synthesized in the cell is crucial to lower GAG levels.

4.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835321

ABSTRACT

The oxytocin receptor (OXTR), encoded by the OXTR gene, is responsible for the signal transduction after binding its ligand, oxytocin. Although this signaling is primarily involved in controlling maternal behavior, it was demonstrated that OXTR also plays a role in the development of the nervous system. Therefore, it is not a surprise that both the ligand and the receptor are involved in the modulation of behaviors, especially those related to sexual, social, and stress-induced activities. As in the case of every regulatory system, any disturbances in the structures or functions of oxytocin and OXTR may lead to the development or modulation of various diseases related to the regulated functions, which in this case include either mental problems (autism, depression, schizophrenia, obsessive-compulsive disorders) or those related to the functioning of reproductive organs (endometriosis, uterine adenomyosis, premature birth). Nevertheless, OXTR abnormalities are also connected to other diseases, including cancer, cardiac disorders, osteoporosis, and obesity. Recent reports indicated that the changes in the levels of OXTR and the formation of its aggregates may influence the course of some inherited metabolic diseases, such as mucopolysaccharidoses. In this review, the involvement of OXTR dysfunctions and OXTR polymorphisms in the development of different diseases is summarized and discussed. The analysis of published results led us to suggest that changes in OXTR expression and OXTR abundance and activity are not specific to individual diseases, but rather they influence processes (mostly related to behavioral changes) that might modulate the course of various disorders. Moreover, a possible explanation of the discrepancies in the published results of effects of the OXTR gene polymorphisms and methylation on different diseases is proposed.


Subject(s)
Disease , Oxytocin , Receptors, Oxytocin , Female , Humans , Pregnancy , DNA Methylation , Ligands , Maternal Behavior , Oxytocin/metabolism , Receptors, Oxytocin/metabolism
5.
Front Microbiol ; 14: 1308018, 2023.
Article in English | MEDLINE | ID: mdl-38333074

ABSTRACT

Rabbit Haemorrhagic Disease (RHD) is a severe disease caused by Lagovirus europaeus/GI.1 and GI.2. Immunological processes such as apoptosis are important factors involved in the pathogenesis of Rabbit Haemorrhagic Disease (RHD). The process of programmed cell death has been quite well characterized in infection with GI.1 strains, but apoptosis in infection with GI.2 strains has not been widely studied. This is particularly important as several studies have shown that significant differences in the host immune response are observed during infection with different strains of Lagovirus europaeus. In this study, we analyzed the gene expression, protein levels and activity of key apoptotic cell death factors in the spleen, kidney, lung, and heart of rabbits. As a result, we showed that there is a significant increase in caspase-3, Bax, Bcl2 and Bax/Bcl2 mRNA gene expression ratio in organs of infected animals. Our results show also increased levels of cleaved caspase-3, caspase-6 and PARP. Moreover, significant activity of caspase-3 was also detected. Our results indicate that caspase-3, caspase-6 and genes coding Bcl2 family proteins play a key role in the apoptotic response in Lagovirus europaeus/GI.2 infection in organs that are not the target of virus replication.

6.
Eur J Cell Biol ; 101(3): 151232, 2022.
Article in English | MEDLINE | ID: mdl-35537249

ABSTRACT

Mucopolysaccharidoses (MPS) are inherited metabolic diseases caused by storage of glycosaminoglycans (GAGs), however, various modulations of the course of these diseases were identified recently due to impairment of different cellular processes. Here, using transcriptomic analyses in cells derived from patients suffering from eleven types of MPS, we demonstrated that expression of dozens to hundreds of genes coding for proteins involved in signal transduction processes is significantly changed in MPS cell relative to controls. When studying membrane estrogen receptor 1 (GPER1) and oxytocin receptor (OXTR) in more detail, we unexpectedly found formation of aggregates of GPER1 in MPS I, and those of OXTR in both MPS I and MPS II cells. The presence of these aggregates did not correlate with levels of expression of GPER1 and OXTR genes and levels of corresponding gene products. On the other hand, the aggregates disappeared in cells treated with enzymes which are otherwise deficient in MPS I and MPS II, causing efficient degradation of GAGs. We demonstrated that GPER1 and OXTR aggregates might be formed due to interactions with GAGs rather than arising from changes of levels of these proteins in cells.


Subject(s)
Mucopolysaccharidosis II , Mucopolysaccharidosis I , Receptors, Estrogen , Receptors, G-Protein-Coupled , Receptors, Oxytocin , Glycosaminoglycans/metabolism , Humans , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/metabolism , Mucopolysaccharidosis II/genetics , Mucopolysaccharidosis II/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Oxytocin/genetics , Receptors, Oxytocin/metabolism , Signal Transduction
7.
Acta Biochim Pol ; 68(4): 565-574, 2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34536268

ABSTRACT

Rapid development of antibiotic resistance of bacteria and fungi, as well as cancer drug resistance, has become a global medical problem. Therefore, alternative methods of treatment are considered. Studies of recent years have focused on finding new biologically active compounds that may be effective against drug-resistant cells. High biodiversity of hard-to-reach environments offers sources to search for novel molecules potentially applicable for medical purposes. In this review article, we summarize and discuss compounds produced by microorganisms from hot springs, glaciers, caves, underground lakes, marine ecosystems, and hydrothermal vents. Antibacterial, antiviral, antifungal, anticancer, anti-inflammatory, and antioxidant potential of these molecules are presented and discussed. We conclude that using compounds derived from microorganisms occurring in extreme environments might be considered in further studies on development of treatment procedures for diseases caused by drug-resistant cells.


Subject(s)
Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Extremophiles/metabolism , Microbiota , Anti-Infective Agents/isolation & purification , Antineoplastic Agents/isolation & purification , Biodiversity , Biological Products/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...