Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 57(3): 1014-22, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24446664

ABSTRACT

A novel series of 2,4-diaminothienopyrimidines with potential as antimalarials was identified from whole-cell high-throughput screening of a SoftFocus ion channel library. Synthesis and structure-activity relationship studies identified compounds with potent antiplasmodial activity and low in vitro cytotoxicity. Several of these analogues exhibited in vivo activity in the Plasmodium berghei mouse model when administered orally. However, inhibition of the hERG potassium channel was identified as a liability for this series.


Subject(s)
Antimalarials/chemical synthesis , Pyrimidines/chemical synthesis , Thiophenes/chemical synthesis , Administration, Oral , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , Cell Line , Databases, Chemical , Drug Resistance, Multiple , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , High-Throughput Screening Assays , Humans , Malaria/drug therapy , Malaria/parasitology , Male , Mice , Microsomes, Liver/metabolism , Plasmodium berghei , Plasmodium falciparum/drug effects , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Thiophenes/chemistry , Thiophenes/pharmacology
2.
J Med Chem ; 56(21): 8860-71, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24099149

ABSTRACT

Replacement of the pyridine core of antimalarial 3,5-diaryl-2-aminopyridines led to the identification of a novel series of pyrazine analogues with potent oral antimalarial activity. However, other changes to the pyridine core and replacement or substitution of the 2-amino group led to loss of antimalarial activity. The 3,5-diaryl-2-aminopyrazine series showed impressive in vitro antiplasmodial activity against the K1 (multidrug resistant) and NF54 (sensitive) strains of Plasmodium falciparum in the nanomolar IC50 range of 6-94 nM while also demonstrating good in vitro metabolic stability in human liver microsomes. In the Plasmodium berghei mouse model, this series generally exhibited good efficacy at low oral doses. One of the frontrunner compounds, 4, displayed potent in vitro antiplasmodial activity with IC50 values of 8.4 and 10 nM against the K1 and NF54 strains, respectively. When evaluated in P. berghei -infected mice, compound 4 was completely curative at an oral dose of 4 × 10 mg/kg.


Subject(s)
Aminopyridines/pharmacology , Antimalarials/pharmacology , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Administration, Oral , Aminopyridines/administration & dosage , Aminopyridines/chemistry , Animals , Antimalarials/administration & dosage , Antimalarials/chemistry , CHO Cells , Cricetulus , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Mice , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Parasitic Sensitivity Tests , Rats , Structure-Activity Relationship
3.
J Med Chem ; 55(24): 11022-30, 2012 Dec 27.
Article in English | MEDLINE | ID: mdl-23189922

ABSTRACT

In an effort to address potential cardiotoxicity liabilities identified with earlier frontrunner compounds, a number of new 3,5-diaryl-2-aminopyridine derivatives were synthesized. Several compounds exhibited potent antiplasmodial activity against both the multidrug resistant (K1) and sensitive (NF54) strains in the low nanomolar range. Some compounds displayed a significant reduction in potency in the hERG channel inhibition assay compared to previously reported frontrunner analogues. Several of these new analogues demonstrated promising in vivo efficacy in the Plasmodium berghei mouse model and will be further evaluated as potential clinical candidates. The SAR for in vitro antiplasmodial and hERG activity was delineated.


Subject(s)
Aminopyridines/chemical synthesis , Antimalarials/chemical synthesis , Administration, Oral , Aminopyridines/chemistry , Aminopyridines/pharmacology , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , Drug Resistance, Multiple , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Humans , Malaria/drug therapy , Mice , Microsomes, Liver/metabolism , Plasmodium berghei , Plasmodium falciparum/drug effects , Solubility , Structure-Activity Relationship
4.
J Med Chem ; 55(7): 3479-87, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-22390538

ABSTRACT

A novel class of orally active antimalarial 3,5-diaryl-2-aminopyridines has been identified from phenotypic whole cell high-throughput screening of a commercially available SoftFocus kinase library. The compounds were evaluated in vitro for their antiplasmodial activity against K1 (chloroquine and drug-resistant strain) and NF54 (chloroquine-susceptible strain) as well as for their cytotoxicity. Synthesis and structure-activity studies identified a number of promising compounds with selective antiplasmodial activity. One of these frontrunner compounds, 15, was equipotent across the two strains (K1 = 25.0 nM, NF54 = 28.0 nM) and superior to chloroquine in the K1 strain (chloroquine IC(50) K1 = 194.0 nM). Compound 15 completely cured Plasmodium berghei-infected mice with a single oral dose of 30 mg/kg. Dose-response studies generated ED(50) and ED(90) values of 0.83 and 1.74 mg/kg for 15 in the standard four-dose Peters test. Pharmacokinetic studies in the rat indicated that this compound has good oral bioavailability (51% at 20 mg/kg) and a reasonable half-life (t(1/2) ∼ 7-8 h).


Subject(s)
Aminopyridines/chemical synthesis , Antimalarials/chemical synthesis , Administration, Oral , Aminopyridines/pharmacokinetics , Aminopyridines/pharmacology , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Biological Availability , Cell Line , Chloroquine/pharmacology , Cytochrome P-450 Enzyme Inhibitors , Drug Resistance , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Female , Humans , Isoenzymes/antagonists & inhibitors , Malaria/drug therapy , Mice , Microsomes, Liver/metabolism , Plasmodium berghei , Plasmodium falciparum/drug effects , Rabbits , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...