Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Naturwissenschaften ; 95(10): 997-1002, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18548222

ABSTRACT

The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants (cer-za.126, cer-yp.949) and wild-type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild-type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones.


Subject(s)
Hymenoptera/physiology , Plant Physiological Phenomena , Plants/parasitology , Spodoptera/physiology , Spodoptera/pathogenicity , Waxes/chemistry , Animals , Female , Hordeum , Insecta/pathogenicity , Male , Motor Activity , Plant Leaves/parasitology , Plant Leaves/physiology , Spodoptera/growth & development , Surface Properties , Walking/physiology , Wasps
2.
New Phytol ; 177(1): 251-263, 2008.
Article in English | MEDLINE | ID: mdl-17937760

ABSTRACT

The initial contact between Blumeria graminis f.sp. hordei and its host barley (Hordeum vulgare) takes place on epicuticular waxes at the surfaces of aerial plant organs. Here, the extent to which chemical composition, crystal structure and hydrophobicity of cuticular waxes affect fungal prepenetration processes was explored. The leaf surface properties of barley eceriferum (cer) wax mutants were characterized in detail. Barley leaves and artificial surfaces were used to investigate the early events of fungal infection. Even after epicuticular waxes had been stripped away, cer mutant leaf surfaces did not affect fungal prepenetration properties. Removal of total leaf cuticular waxes, however, resulted in a 20% reduction in conidial germination and differentiation. Two major components of barley leaf wax, hexacosanol and hexacosanal, differed considerably in their ability to effectively trigger conidial differentiation on glass surfaces. While hexacosanol, attaining a maximum hydrophobicity with contact angles of no more than 80 degrees, proved to be noninductive, hexacosanal significantly stimulated differentiation in c. 50% of B. graminis conidia, but only at contact angles > 80 degrees. These results, together with an observed inductive effect of highly hydrophobic, wax-free artificial surfaces, provide new insights into the interplay of physical and chemical surface cues involved in triggering prepenetration processes in B. graminis.


Subject(s)
Ascomycota/physiology , Hordeum/microbiology , Plant Diseases/microbiology , Plant Leaves/microbiology , Host-Pathogen Interactions , Plant Epidermis/metabolism , Waxes
SELECTION OF CITATIONS
SEARCH DETAIL
...