Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
bioRxiv ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38826411

ABSTRACT

Rationale: Cystic fibrosis is a genetic disorder characterized by recurrent airway infections, inflammation, and progressive decline in lung function. Autopsy and spirometry data suggest that cystic fibrosis may start in the small airways which, due to the fractal nature of the airways, account for most of the airway tree surface area. However, they are not easily accessible for testing. Objectives: Here, we tested the hypothesis that mucociliary clearance is abnormal in the small airways of newborn cystic fibrosis pigs. Methods: Current mucociliary clearance assays are limited therefore we developed a dynamic positron emission tomography scan assay with high spatial and temporal resolution. Each study was accompanied by a high-resolution computed tomography scan that helped identify the thin outer region of the lung that contained small airways. Measurements and Main Results: Clearance of aerosolized [ 68 Ga]macro aggregated albumin from distal airways occurred within minutes after delivery and followed a two-phase process. In cystic fibrosis pigs, both early and late clearance rates were slower. Stimulation of the cystic fibrosis airways with the purinergic agonist UTP further impaired late clearance. Only 1 cystic fibrosis pig treated with UTP out of 6 cleared more than 20% of the delivered dose. Conclusions: These data indicate that mucociliary transport in the small airways is fast and can easily be missed if the acquisition is not fast enough. The data also indicate that mucociliary transport is impaired in small airways of cystic fibrosis pigs. This defect is exacerbated by stimulation of mucus secretions with purinergic agonists.

2.
medRxiv ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38746213

ABSTRACT

Background: Many of those infected with COVID-19 experience long-term disability due to persistent symptoms known as Long-COVID, which include ongoing respiratory issues, loss of taste and smell, and impaired daily functioning. Research Question: This study aims to better understand the chronology of long-COVID symptoms. Study Design and Methods: We prospectively enrolled 403 adults from the University of Iowa long-COVID clinic (June 2020 to February 2022). Participants provided symptom data during acute illness, symptom progression, and other clinical characteristics. Patients in this registry received a survey containing questions including current symptoms and status since long-COVID diagnosis (sliding status scale, PHQ2, GAD2, MMRC). Those >12 months since acute-COVID diagnosis had chart review done to track their symptomology. Results: Of 403 participants contacted, 129 (32%) responded. The mean age (in years) was 50.17 +/-14.28, with 31.8% male and 68.2% female. Severity of acute covid treatment was stratified by treatment in the outpatient (70.5%), inpatient (16.3%), or ICU (13.2%) settings. 51.2% reported subjective improvement (sliding scale scores of 67-100) since long-COVID onset. Ages 18-29 reported significantly higher subjective status scores. Subjective status scores were unaffected by severity. 102 respondents were >12 months from their initial COVID-19 diagnosis and were tracked for longitudinal symptom persistence. All symptoms tracked had variance (mean fraction 0.58, range 0.34-0.75) in the reported symptoms at the time of long-COVID presentation when compared with patient survey report. 48 reported persistent dyspnea, 23 (48%) had resolved it at time of survey. For fatigue, 44 had persistence, 12 (27%) resolved. Interpretation: Overall, 51.2% respondents improved since their long-COVID began. Pulmonary symptoms were more persistent than neuromuscular symptoms (anosmia, dysgeusia, myalgias). Gender, time since acute COVID infection, and its severity didn't affect subjective status or symptoms. This study highlights recall bias that may be prevalent in other long-COVID research reliant on participant memory.

3.
Front Med (Lausanne) ; 11: 1375457, 2024.
Article in English | MEDLINE | ID: mdl-38654838

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease. Historically, two COPD phenotypes have been described: chronic bronchitis and emphysema. Although these phenotypes may provide additional characterization of the pathophysiology of the disease, they are not extensive enough to reflect the heterogeneity of COPD and do not provide granular categorization that indicates specific treatment, perhaps with the exception of adding inhaled glucocorticoids (ICS) in patients with chronic bronchitis. In this review, we describe COPD phenotypes that provide prognostication and/or indicate specific treatment. We also describe COPD-like phenotypes that do not necessarily meet the current diagnostic criteria for COPD but provide additional prognostication and may be the targets for future clinical trials.

4.
Sleep Med ; 110: 60-67, 2023 10.
Article in English | MEDLINE | ID: mdl-37541132

ABSTRACT

Circadian dysrhythmias occur commonly in critically ill patients reflecting variable effects of underlying illness, ICU environment, and treatments. We retrospectively analyzed the relationship between clinical outcomes and 24-h urinary 6-sulfatoxymelatonin (aMT6s) excretion profiles in 37 critically ill patients with shock and/or respiratory failure. Nonlinear regression was used to fit a 24-h cosine curve to each patient's aMT6s profile, with rhythmicity determined by the zero-amplitude test. From these curves we determined acrophase, amplitude, phase, and night/day ratio. After assessing unadjusted relationships, we identified the optimal multivariate models for hospital survival and for discharge to home (vs. death or transfer to another facility). Normalized aMT6s rhythm amplitude was greater (p = 0.005) in patients discharged home than in those who were not, while both groups exhibited a phase delay. Patients with rhythmic aMT6s excretion were more likely to survive (OR 5.25) and be discharged home (OR 8.89; p < 0.05 for both) than patients with arrhythmic profiles, associations that persisted in multivariate modelling. In critically ill patients with shock and/or respiratory failure, arrhythmic and/or low amplitude 24-h aMT6s rhythms were associated with worse clinical outcomes, suggesting a role for the melatonin-based rhythm as a novel biomarker of critical illness severity.


Subject(s)
Melatonin , Humans , Critical Illness , Retrospective Studies , Circadian Rhythm , Biomarkers
5.
J Clin Invest ; 133(20)2023 10 16.
Article in English | MEDLINE | ID: mdl-37581935

ABSTRACT

The volume and composition of a thin layer of liquid covering the airway surface defend the lung from inhaled pathogens and debris. Airway epithelia secrete Cl- into the airway surface liquid through cystic fibrosis transmembrane conductance regulator (CFTR) channels, thereby increasing the volume of airway surface liquid. The discovery that pulmonary ionocytes contain high levels of CFTR led us to predict that ionocytes drive secretion. However, we found the opposite. Elevating ionocyte abundance increased liquid absorption, whereas reducing ionocyte abundance increased secretion. In contrast to other airway epithelial cells, ionocytes contained barttin/Cl- channels in their basolateral membrane. Disrupting barttin/Cl- channel function impaired liquid absorption, and overexpressing barttin/Cl- channels increased absorption. Together, apical CFTR and basolateral barttin/Cl- channels provide an electrically conductive pathway for Cl- flow through ionocytes, and the transepithelial voltage generated by apical Na+ channels drives absorption. These findings indicate that ionocytes mediate liquid absorption, and secretory cells mediate liquid secretion. Segregating these counteracting activities to distinct cell types enables epithelia to precisely control the airway surface. Moreover, the divergent role of CFTR in ionocytes and secretory cells suggests that cystic fibrosis disrupts both liquid secretion and absorption.


Subject(s)
Chloride Channels , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Humans , Chloride Channels/metabolism , Chlorides/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Epithelium/metabolism , Lung/metabolism
7.
Physiol Rep ; 10(17): e15340, 2022 09.
Article in English | MEDLINE | ID: mdl-36073059

ABSTRACT

In cystic fibrosis (CF), the loss of cystic fibrosis transmembrane conductance regulator (CFTR) mediated Cl-  and HCO3 -  secretion across the epithelium acidifies the airway surface liquid (ASL). Acidic ASL alters two key host defense mechanisms: Rapid ASL bacterial killing and mucociliary transport (MCT). Aerosolized tromethamine (Tham) increases ASL pH and restores the ability of ASL to rapidly kill bacteria in CF pigs. In CF pigs, clearance of insufflated microdisks is interrupted due to abnormal mucus causing microdisks to abruptly recoil. Aerosolizing a reducing agent to break disulfide bonds that link mucins improves MCT. Here, we are interested in restoring MCT in CF by aerosolizing Tham, a buffer with a pH of 8.4. Because Tham is hypertonic to serum, we use an acidified formulation as a control. We measure MCT by tracking the caudal movement of individual tantalum microdisks with serial chest computed tomography scans. Alkaline Tham improves microdisk clearance to within the range of that seen in non-CF pigs. It also partially reverses MCT defects, including reduced microdisk recoil and elapse time until they start moving after methacholine stimulation in CF pig airways. The effect is not due to hypertonicity, as it is not seen with acidified Tham or hypertonic saline. This finding indicates acidic ASL impairs CF MCT and suggests that alkalinization of ASL pH with inhaled Tham may improve CF airway disease.


Subject(s)
Cystic Fibrosis , Animals , Bicarbonates , Cystic Fibrosis/drug therapy , Mucociliary Clearance , Respiratory Mucosa , Swine , Tromethamine
8.
Am J Physiol Cell Physiol ; 323(4): C1044-C1051, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35993520

ABSTRACT

Na/K ATPase activity is essential for ion transport across epithelia. FXYD3, a γ subunit of the Na/K ATPase, is expressed in the airway, but its function remains undetermined. Single-cell RNA sequencing and immunohistochemistry revealed that FXYD3 localizes within the basolateral membrane of all airway epithelial cells. To study FXYD3 function, we reduced FXYD3 expression using siRNA. After permeabilizing the apical membrane with nystatin, epithelia pretreated with FXYD3-targeting siRNA had lower ouabain-sensitive short-circuit currents than control epithelia. FXYD3-targeting siRNA also reduced amiloride-sensitive short-circuit currents and liquid absorption across intact epithelia. These data are consistent with FXYD3 facilitating Na+ and liquid absorption. FXYD3 may be needed to maintain the high rates of Na+ and fluid absorption observed for airway and other FXYD3-expressing epithelia.


Subject(s)
Amiloride , Ouabain , Humans , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Nystatin , RNA, Small Interfering/genetics , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism
9.
PLoS One ; 17(6): e0269647, 2022.
Article in English | MEDLINE | ID: mdl-35666753

ABSTRACT

INTRODUCTION: Vitamin D supplementation has been suggested to enhance immunity during respiratory infection season. We tested the effect of active vitamin D (calcitriol) supplementation on key airway innate immune mechanisms in vitro. METHODS: Primary human airway epithelial cells (hAECs) grown at the air liquid interface were supplemented with 10-7 M calcitriol for 24 hours (or a time course) and their antimicrobial airway surface liquid (ASL) was tested for pH, viscoscity, and antibacterial and antiviral properties. We also tested hAEC ciliary beat frequency (CBF). Next, we assessed alterations to hAEC gene expression using RNA sequencing, and based on results, we measured neutrophil migration across hAECs. RESULTS: Calcitriol supplementation enhanced ASL bacterial killing of Staphylococcus aureus (p = 0.02) but did not enhance its antiviral activity against 229E-CoV. It had no effect on ASL pH or viscosity at three timepoints. Lastly, it did not affect hAEC CBF or neutrophil migration, although there was a trend of enhanced migration in the presence of a neutrophil chemokine (p = 0.09). Supplementation significantly altered hAEC gene expression, primarily of AMP-related genes including CAMP and TREM1. CONCLUSION: While vitamin D supplementation did not have effects on many airway innate immune mechanisms, it may provide a useful tool to resolve respiratory bacterial infections.


Subject(s)
Calcitriol , Vitamin D , Antiviral Agents/metabolism , Calcitriol/metabolism , Cells, Cultured , Epithelial Cells/metabolism , Humans , Immunity, Innate , Vitamin D/metabolism , Vitamin D/pharmacology , Vitamins/metabolism
10.
Radiology ; 304(1): 185-192, 2022 07.
Article in English | MEDLINE | ID: mdl-35289657

ABSTRACT

Background The long-term effects of SARS-CoV-2 infection on pulmonary structure and function remain incompletely characterized. Purpose To test whether SARS-CoV-2 infection leads to small airways disease in patients with persistent symptoms. Materials and Methods In this single-center study at a university teaching hospital, adults with confirmed COVID-19 who remained symptomatic more than 30 days following diagnosis were prospectively enrolled from June to December 2020 and compared with healthy participants (controls) prospectively enrolled from March to August 2018. Participants with post-acute sequelae of COVID-19 (PASC) were classified as ambulatory, hospitalized, or having required the intensive care unit (ICU) based on the highest level of care received during acute infection. Symptoms, pulmonary function tests, and chest CT images were collected. Quantitative CT analysis was performed using supervised machine learning to measure regional ground-glass opacity (GGO) and using inspiratory and expiratory image-matching to measure regional air trapping. Univariable analyses and multivariable linear regression were used to compare groups. Results Overall, 100 participants with PASC (median age, 48 years; 66 women) were evaluated and compared with 106 matched healthy controls; 67% (67 of 100) of the participants with PASC were classified as ambulatory, 17% (17 of 100) were hospitalized, and 16% (16 of 100) required the ICU. In the hospitalized and ICU groups, the mean percentage of total lung classified as GGO was 13.2% and 28.7%, respectively, and was higher than that in the ambulatory group (3.7%, P < .001 for both comparisons). The mean percentage of total lung affected by air trapping was 25.4%, 34.6%, and 27.3% in the ambulatory, hospitalized, and ICU groups, respectively, and 7.2% in healthy controls (P < .001). Air trapping correlated with the residual volume-to-total lung capacity ratio (ρ = 0.6, P < .001). Conclusion In survivors of COVID-19, small airways disease occurred independently of initial infection severity. The long-term consequences are unknown. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Elicker in this issue.


Subject(s)
COVID-19/complications , Lung Diseases , COVID-19/diagnostic imaging , Female , Humans , Lung Diseases/diagnostic imaging , Lung Diseases/virology , Male , Middle Aged , Tomography, X-Ray Computed/methods , Post-Acute COVID-19 Syndrome
11.
Am J Respir Cell Mol Biol ; 66(6): 612-622, 2022 06.
Article in English | MEDLINE | ID: mdl-35235762

ABSTRACT

Lack of CFTR (cystic fibrosis transmembrane conductance regulator) affects the transcriptome, composition, and function of large and small airway epithelia in people with advanced cystic fibrosis (CF); however, whether lack of CFTR causes cell-intrinsic abnormalities present at birth versus inflammation-dependent abnormalities is unclear. We performed a single-cell RNA-sequencing census of microdissected small airways from newborn CF pigs, which recapitulate CF host defense defects and pathology over time. Lack of CFTR minimally affected the transcriptome of large and small airways at birth, suggesting that infection and inflammation drive transcriptomic abnormalities in advanced CF. Importantly, common small airway epithelial cell types expressed a markedly different transcriptome than corresponding large airway cell types. Quantitative immunohistochemistry and electrophysiology of small airway epithelia demonstrated basal cells that reach the apical surface and a water and ion transport advantage. This single cell atlas highlights the archetypal nature of airway epithelial cells with location-dependent gene expression and function.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Animals , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Humans , Inflammation/metabolism , Ion Transport , Respiratory System/metabolism , Swine
12.
J Infect Dis ; 225(2): 214-218, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34734257

ABSTRACT

Air pollution particulate matter (PM) is associated with SARS-CoV-2 infection and severity, although mechanistic studies are lacking. We tested whether airway surface liquid (ASL) from primary human airway epithelial cells is antiviral against SARS-CoV-2 and human alphacoronavirus 229E (CoV-229E) (responsible for common colds), and whether PM (urban, indoor air pollution [IAP], volcanic ash) affected ASL antiviral activity. ASL inactivated SARS-CoV-2 and CoV-229E. Independently, urban PM also decreased SARS-CoV-2 and CoV-229E infection, and IAP PM decreased CoV-229E infection. However, in combination, urban PM impaired ASL's antiviral activity against both viruses, and the same effect occurred for IAP PM and ash against SARS-CoV-2, suggesting that PM may enhance SARS-CoV-2 infection.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Immunity, Innate , Particulate Matter/adverse effects , Urban Population , Antiviral Agents/pharmacology , COVID-19/prevention & control , COVID-19/transmission , Humans , Polymerase Chain Reaction , SARS-CoV-2 , Urban Health
13.
Ann Otol Rhinol Laryngol ; 131(9): 1013-1020, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34674574

ABSTRACT

OBJECTIVES: In cystic fibrosis (CF), loss of CFTR-mediated bicarbonate secretion reduces the airway surface liquid (ASL) pH causing airway host defense defects. Aerosolized sodium bicarbonate can reverse these defects, but its effects are short-lived. Aerosolized tromethamine (THAM) also raises the ASL pH but its effects are much longer lasting. In this pilot study, we tested the hypothesis that nasally administered THAM would alter the nasal bacterial composition in adults with and without CF. METHODS: Subjects (n = 32 total) received intranasally administered normal saline or THAM followed by a wash out period prior to receiving the other treatment. Nasal bacterial cultures were obtained prior to and after each treatment period. RESULTS: At baseline, nasal swab bacterial counts were similar between non-CF and CF subjects, but CF subjects had reduced microbial diversity. Both nasal saline and THAM were well-tolerated. In non-CF subjects, nasal airway alkalinization decreased both the total bacterial density and the gram-positive bacterial species recovered. In both non-CF and CF subjects, THAM decreased the amount of Corynebacterium accolens detected, but increased the amount of Corynebacterium pseudodiphtheriticum recovered on nasal swabs. A reduction in Staphylococcus aureus nasal colonization was also found in subjects who grew C. pseudodiphtheriticum. CONCLUSIONS: This study shows that aerosolized THAM is safe and well-tolerated and that nasal airway alkalinization alters the composition of mucosal bacterial communities. CLINICAL TRIAL REGISTRATION: NCT00928135 (https://clinicaltrials.gov/ct2/show/NCT00928135).


Subject(s)
Cystic Fibrosis , Microbiota , Adult , Cystic Fibrosis Transmembrane Conductance Regulator , Humans , Hydrogen-Ion Concentration , Pilot Projects
15.
Am J Respir Crit Care Med ; 204(10): 1211-1221, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34343025

ABSTRACT

Rationale: The Southeast Asian tuberculosis burden is high, and it remains unclear if urban indoor air pollution in this setting is exacerbating the epidemic. Objectives: To determine the associations of latent tuberculosis with common urban indoor air pollution sources (secondhand smoke, indoor motorcycle emissions, and cooking) in Southeast Asia. Methods: We enrolled child household contacts of patients with microbiologically confirmed active tuberculosis in Vietnam, from July 2017 to December 2019. We tested children for latent tuberculosis and evaluated air pollution exposures with questionnaires and personal aerosol sampling. We tested hypotheses using generalized estimating equations. Measurements and Main Results: We enrolled 72 patients with tuberculosis (27% with cavitary disease) and 109 of their child household contacts. Latent tuberculosis was diagnosed in 58 (53%) household contacts at baseline visit. Children experienced a 2.56-fold increased odds of latent tuberculosis for each additional household member who smoked (95% confidence interval, 1.27-5.16). Odds were highest among children exposed to indoor smokers and children <5 years old exposed to household smokers. Each residential floor above street-level pollution decreased the odds of latent tuberculosis by 36% (adjusted odds ratio, 0.64; 95% confidence interval, 0.42-0.96). Motorcycles parked inside children's homes and cooking with liquid petroleum gas compared with electricity increased the odds of latent tuberculosis, whereas kitchen ventilation decreased the effect, but these findings were not statistically significant. Conclusions: Common urban indoor air pollution sources were associated with increased odds of latent tuberculosis infection in child household contacts of patients with active tuberculosis.


Subject(s)
Air Pollution, Indoor/adverse effects , Cooking , Disease Susceptibility , Latent Tuberculosis/chemically induced , Risk Assessment/statistics & numerical data , Tobacco Smoke Pollution/adverse effects , Vehicle Emissions , Asian People/statistics & numerical data , Case-Control Studies , Child , Child, Preschool , Female , Humans , Male , Odds Ratio , Urban Population/statistics & numerical data , Vietnam
16.
Cells ; 10(5)2021 04 25.
Article in English | MEDLINE | ID: mdl-33923029

ABSTRACT

Cystic fibrosis (CF) is caused by genetic mutations of the CF transmembrane conductance regulator (CFTR), leading to disrupted transport of Cl- and bicarbonate and CF lung disease featuring bacterial colonization and chronic infection in conducting airways. CF pigs engineered by mutating CFTR develop lung disease that mimics human CF, and are well-suited for investigating CF lung disease therapeutics. Clinical data suggest small airways play a key role in the early pathogenesis of CF lung disease, but few preclinical studies have focused on small airways. Efficient targeted delivery of CFTR cDNA to small airway epithelium may correct the CFTR defect and prevent lung infections. Adeno-associated virus 4 (AAV4) is a natural AAV serotype and a safe vector with lower immunogenicity than other gene therapy vectors such as adenovirus. Our analysis of AAV natural serotypes using cultured primary pig airway epithelia showed that AAV4 has high tropism for airway epithelia and higher transduction efficiency for small airways compared with large airways. AAV4 mediated the delivery of CFTR, and corrected Cl- transport in cultured primary small airway epithelia from CF pigs. Moreover, AAV4 was superior to all other natural AAV serotypes in transducing ITGα6ß4+ pig distal lung progenitor cells. In addition, AAV4 encoding eGFP can infect pig distal lung epithelia in vivo. This study demonstrates AAV4 tropism in small airway progenitor cells, which it efficiently transduces. AAV4 offers a novel tool for mechanistical study of the role of small airway in CF lung pathogenesis in a preclinical large animal model.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/administration & dosage , Cystic Fibrosis/therapy , Dependovirus/genetics , Genetic Vectors/administration & dosage , Lung/metabolism , Respiratory Mucosa/metabolism , Stem Cells/metabolism , Animals , Cells, Cultured , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Genetic Vectors/genetics , Humans , Swine
17.
Am J Respir Cell Mol Biol ; 65(2): 146-156, 2021 08.
Article in English | MEDLINE | ID: mdl-33789071

ABSTRACT

In a newborn pig cystic fibrosis (CF) model, the ability of gland-containing airways to fight infection was affected by at least two major host-defense defects: impaired mucociliary transport and a lower airway surface liquid (ASL) pH. In the gland-containing airways, the ASL pH is balanced by CFTR (CF transmembrane conductance regulator) and ATP12A, which, respectively, control HCO3- transport and proton secretion. We found that, although porcine small airway tissue expressed lower amounts of ATP12A, the ASL of epithelial cultures from CF distal small airways (diameter < 200 µm) were nevertheless more acidic (compared with non-CF airways). Therefore, we hypothesized that gland-containing airways and small airways control acidification using distinct mechanisms. Our microarray data suggested that small airway epithelia mediate proton secretion via ATP6V0D2, an isoform of the V0 d subunit of the H+-translocating plasma membrane V-type ATPase. Immunofluorescence of small airways verified the expression of the V0 d2 subunit isoform at the apical surface of Muc5B+ secretory cells, but not ciliated cells. Inhibiting the V-type ATPase with bafilomycin A1 elevated the ASL pH of small airway cultures, in the presence or absence of HCO3-, and decreased ASL viscosity. These data suggest that, unlike large airways, which are acidified by ATP12A activity, small airways are acidified by V-type ATPase, thus identifying V-type ATPase as a novel therapeutic target for small airway diseases.


Subject(s)
Bicarbonates/metabolism , Cystic Fibrosis/metabolism , Epithelial Cells/metabolism , Respiratory Mucosa/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Animals, Genetically Modified , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Female , Hydrogen-Ion Concentration , Male , Swine , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors , Vacuolar Proton-Translocating ATPases/genetics
18.
Nutrients ; 12(9)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867053

ABSTRACT

BACKGROUND: It is widely unknown why respiratory infections follow a seasonal pattern. Variations in ultraviolet B (UVB) light during seasons affects cutaneous synthesis of vitamin D3. Serum vitamin D concentration influences the expression of airway surface liquid (ASL) antimicrobial peptides such as LL-37. OBJECTIVE: We sought to determine the effect of seasons on serum vitamin D levels and ASL antimicrobial activity. METHODS: Forty participants, 18-60 years old, were randomized 1:1 to receive 90 days of 1000 IU vitamin D3 or placebo. We collected ASL via bronchoscopy and measured serum 25(OH) vitamin D from participants before and after intervention across seasons. We measured ASL antimicrobial activity by challenging samples with bioluminescent Staphylococcus aureus and measured relative light units (RLUs) after four minutes. We also investigated the role of LL-37 using a monoclonal neutralizing antibody. RESULTS: We found that participants, prior to any intervention, during summer-fall (n = 20) compared to winter-spring (n = 20) had (1) decreased live bacteria after challenge (5542 ± 175.2 vs. 6585 ± 279 RLU, p = 0.003) and (2) higher serum vitamin D (88.25 ± 24.25 vs. 67.5 ± 45.25 nmol/L, p = 0.026). Supplementation with vitamin D3 increased vitamin D levels and restored ASL antimicrobial activity only during the winter-spring. The increased ASL antimicrobial activity seen during the summer-fall was abrogated by adding the LL-37 neutralizing antibody. CONCLUSION: ASL kills bacteria more effectively during the summer-fall compared to the winter-spring. Supplementation of vitamin D during winter-spring restores ASL antimicrobial activity by increasing the expression of antimicrobial peptides including LL-37.


Subject(s)
Anti-Bacterial Agents/metabolism , Cholecalciferol/blood , Respiratory System/metabolism , Seasons , Vitamins/blood , Adult , Double-Blind Method , Female , Humans , Male , Middle Aged , Ultraviolet Rays , Young Adult
19.
J Expo Sci Environ Epidemiol ; 30(5): 778-784, 2020 09.
Article in English | MEDLINE | ID: mdl-32461549

ABSTRACT

BACKGROUND: Americans spend most of their time indoors. Indoor particulate matter (PM) 2.5 µm and smaller (PM2.5) concentrations often exceed ambient concentrations. Therefore, we tested whether the use of an air purifying device (electrostatic precipitator, ESP) could reduce PM2.5 in homes of smokers with and without respiratory exacerbations, compared with baseline. METHODS: We assessed PM2.5 concentrations in homes of subjects with and without a recent (≤3 years) history of respiratory exacerbation. We compared PM2.5 concentrations during 1 month of ESP use with those during 1 month without ESP use. RESULTS: Our study included 19 subjects (53-80 years old), nine with a history of respiratory exacerbation. Geometric mean (GM) PM2.5 and median GM daily peak PM2.5 were significantly lower during ESP deployment compared with the equivalent time-period without the ESP (GSD = 0.50 and 0.37 µg/m3, respectively, p < 0.001). PM2.5 in homes of respiratory exacerbators tended (p < 0.14) to be higher than PM2.5 in homes of those without a history of respiratory exacerbation. CONCLUSIONS: Subjects with a history of respiratory exacerbation tended to have higher mean, median, and mean peak PM2.5 concentrations compared with homes of subjects without a history of exacerbations. The ESP intervention reduced in-home PM2.5 concentrations, demonstrating its utility in reducing indoor exposures. NOVELTY OF STUDY: Our work characterizes PM air pollution concentrations in homes of study subjects with and without respiratory exacerbations. We demonstrate that PM concentrations tend to be higher in homes of participants with respiratory exacerbations, and that the use of an inexpensive air purifier resulted in significantly lower daily average PM concentrations than when the purifier was not present. Our results provide a helpful intervention strategy for purifying indoor air and may be useful for susceptible populations.


Subject(s)
Air Filters , Air Pollutants , Air Pollution, Indoor , Aged , Aged, 80 and over , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Humans , Iowa , Middle Aged , Particulate Matter/analysis , Smokers
20.
Sci Total Environ ; 711: 134580, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32000313

ABSTRACT

Trees can sequester air pollutants, and air pollution is associated with poor tuberculosis outcomes. However, the health impacts of urban trees on tuberculosis patients are unknown. To elucidate the effects of urban tree canopy on mortality during tuberculosis treatment, we evaluated patients diagnosed with active tuberculosis in California from 2000 through 2012, obtaining patient data from the California tuberculosis registry. Our primary outcome was all-cause mortality during tuberculosis treatment. We determined percent tree cover using 1 mresolution color infrared orthoimagery categorized into land cover classes, then linked tree cover to four circular buffer zones of 50-300 m radii around patient residential addresses. We used the Kaplan-Meier method to estimate survival probabilities and Cox regression models to determine mortality hazard ratios, adjusting for demographic, socioeconomic, and clinical covariates. Our cohort included 33,962 tuberculosis patients of median age 47, 59% male, 51% unemployed, and 4.9% HIV positive. Tuberculosis was microbiologically confirmed in 79%, and 1.17% were multi-drug resistant (MDR). Median tree cover was 7.9% (50 m buffer). Patients were followed for 23,280 person-years with 2370 deaths during tuberculosis treatment resulting in a crude mortality rate of 1018 deaths per 10,000 person-years. Increasing tree cover quintiles were associated with decreasing mortality risk during tuberculosis treatment in all buffers, and the magnitude of association decreased incrementally with increasing buffer radius: In the 50 m buffer, patients living in neighborhoods with the highest quintile tree cover experienced a 22% reduction in mortality (HR 0.78, 95%CI 0.68-0.90) compared to those living in lowest quintile tree cover; whereas for 100, 200, and 300 m buffers, a 21%, 13%, and 11% mortality risk reduction was evident. In conclusion, urban tree canopy was associated with decreased mortality during tuberculosis treatment even after adjusting for multiple demographic, socioeconomic, and clinical factors, suggesting that trees might play a role in improving tuberculosis outcomes.


Subject(s)
Tuberculosis , Adult , Aged , Air Pollutants , Air Pollution , California/epidemiology , Female , Humans , Male , Middle Aged , Residence Characteristics , Trees , Tuberculosis/mortality , Urban Health Services
SELECTION OF CITATIONS
SEARCH DETAIL
...