Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37834739

ABSTRACT

S- and Se-based chalcogenide glasses are intrinsically metastable and exhibit a number of photo-induced effects unique to this class of materials, reversible photostructural changes and photo-induced anisotropy being major examples. These effects are usually interpreted in terms of the formation of valence alternation pairs and 'wrong' bonds. In this work, using density functional theory simulations, we demonstrate for the case example of As2S3 that a strong decrease in the optical band gap can be achieved if a polymorphic transformation of the local structure from orpiment to that of tetradymite takes place. For the formation of the latter, the presence of lone-pair electrons in near-linear atomic configurations is crucial. Our results represent a novel approach to understanding the photo-induced structural changes in chalcogenide glasses as being due to the presence of polymorphism, and will lead to their wider use in various photonic devices.

2.
Sensors (Basel) ; 20(17)2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32872209

ABSTRACT

Modern trends in optical bioimaging require novel nanoproducts combining high image contrast with efficient treatment capabilities. Silicon nanoparticles are a wide class of nanoobjects with tunable optical properties, which has potential as contrasting agents for fluorescence imaging and optical coherence tomography. In this paper we report on developing a novel technique for fabricating silicon nanoparticles by means of picosecond laser ablation of porous silicon films and silicon nanowire arrays in water and ethanol. Structural and optical properties of these particles were studied using scanning electron and atomic force microscopy, Raman scattering, spectrophotometry, fluorescence, and optical coherence tomography measurements. The essential features of the fabricated silicon nanoparticles are sizes smaller than 100 nm and crystalline phase presence. Effective fluorescence and light scattering of the laser-ablated silicon nanoparticles in the visible and near infrared ranges opens new prospects of their employment as contrasting agents in biophotonics, which was confirmed by pilot experiments on optical imaging.


Subject(s)
Laser Therapy , Nanoparticles , Nanowires , Porosity , Silicon
SELECTION OF CITATIONS
SEARCH DETAIL
...